×

Learning Boolean concepts in the presence of many irrelevant features. (English) Zbl 0942.68657


MSC:

68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almuallim, H.: Exploiting symmetry properties in the evaluation of inductive learning algorithms: an empirical domain-independent comparative study. Tech. report 91-30-09 (1991)
[2] Almuallim, H.: Concept coverage and its application to two learning tasks. Ph.d. thesis (1992)
[3] Almuallim, H.; Dietterich, T. G.: Learning with many irrelevant features. Proceedings AAAI-91, 547-552 (1991)
[4] Almuallim, H.; Dietterich, T. G.: Efficient algorithms for identifying relevant features. Proceedings ninth biennial conference of the canadian society for computational studies of intelligence, 38-45 (1992)
[5] Buntine, W. L.: Myths and legends in learning classification rules. Proceedings AAAI-90, 736-742 (1990)
[6] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, M.: Occam’s razor. Inf. process. Lett. 24, 377-380 (1987) · Zbl 0653.68084 · doi:10.1016/0020-0190(87)90114-1
[7] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, M.: Learnability and the vapnik-chervonenkis dimension. J. ACM 36, No. 4, 929-965 (1989) · Zbl 0697.68079 · doi:10.1145/76359.76371
[8] Chvatal, V.: A greedy heuristic for the set covering problem. Math. oper. Res. 4, No. 3, 233-235 (1979) · Zbl 0443.90066 · doi:10.1287/moor.4.3.233
[9] Ehrenfeucht, A.; Haussler, D.; Kearns, M.; Valiant, L. G.: A general lower bound on the number of examples needed for learning. Proceedings first workshop on computational learning theory, 139-154 (1988) · Zbl 0679.68158 · doi:10.1016/0890-5401(89)90002-3
[10] Garey, M. R.; Johnson, D. S.: Computers and intractability: A guide to the theory of NP-completeness. (1979) · Zbl 0411.68039
[11] Ichino, M.; Sklansky, J.: Optimum feature selection by zero-one integer programming. IEEE trans. Syst. man cybern. 14, No. 5, 737-746 (1984) · Zbl 0549.68087 · doi:10.1109/TSMC.1984.6313294
[12] Ichino, M.; Sklansky, J.: Feature selection for linear classifiers. Proceedings seventh international conference on pattern recognition, 124-127 (1984) · Zbl 0549.68087
[13] Kearns, M.; Li, M.: Learning in the presence of malicious errors. Proceedings 20th annual ACM symposium on the theory of computation, 267-279 (1988)
[14] Kittler, J.: Computational problems of feature selection pertaining to large data sets. Pattern recognition in practice, 405-414 (1980)
[15] Laird, P.: Learning from good and bad data. (1988) · Zbl 0722.68091
[16] Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach learn. 2, 285-318 (1988)
[17] Mitchell, T. M.: Generalization as search. Artif. intell. 18, 203-226 (1982)
[18] Morgera, S. D.: Computational complexity and VLSI implementation of an optimal feature selection strategy. Pattern recognition in practice II, 389-400 (1986)
[19] Mucciardi, A. N.; Gose, E. E.: A comparison of seven techniques for choosing subsets of pattern recognition properties. IEEE trans. Comput. 20, No. 9, 1023-1031 (1971) · Zbl 0222.68044 · doi:10.1109/T-C.1971.223398
[20] Narendra, P. M.; Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE trans. Comput. 26, No. 9, 917-922 (1977) · Zbl 0363.68059 · doi:10.1109/TC.1977.1674939
[21] Pagallo, G.; Haussler, D.: Boolean feature discovery in empirical learning. Mach learn. 5, No. 1, 71-100 (1990)
[22] Queiros, C. E.; Gelsema, E. S.: On feature selection. Proceedings seventh international conference on pattern recognition, 128-130 (1984) · Zbl 0800.68778
[23] Quinlan, J. R.: Induction of decision trees. Mach learn. 1, No. 1, 81-106 (1986)
[24] Wolpert, D.: A mathematical theory of generalization: parts I and II. Complex syst. 4, No. 2, 151-249 (1990) · Zbl 0744.92008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.