×

On a class of Urysohn-Stieltjes quadratic integral equations and their applications. (English) Zbl 0943.45002

The authors consider the solvability problem for some classes of nonlinear quadratic integral equations of Urysohn-Stieltjes type, containing, in particular, Chandrasekhar quadratic integral equations.

MSC:

45G10 Other nonlinear integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. Appell, P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, Vol. 95, Camb. Univ. Press, Cambridge, 1990. · Zbl 0701.47041
[2] Argyros, I.K., Quadratic equations and applications to Chandrasekhar’s and related equations, Bull. austral. math. soc., 32, 275, (1985) · Zbl 0607.47063
[3] Argyros, I.K., On a class of quadratic integral equations with perturbations, Funct. approx., 20, 51, (1992) · Zbl 0780.45005
[4] F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York, 1964. · Zbl 0117.05806
[5] Banaś, J., Some properties of urysohn – stieltjes integral operators, Int. J. math. math. sci., 21, 79, (1998) · Zbl 0896.47050
[6] J. Banaś, On nonlinear Volterra-Stieltjes integral operators, to appear.
[7] J. Banaś, J. Dronka, Some properties of Fredholm-Stieltjes and Hammerstein-Stieltjes integral operators, Boll. Un. Mat. Ital. (7) 9-13 (1995) 203.
[8] J. Banaś, J. Dronka, Integral operators of Volterra-Stieltjes type, their properties and applications, to appear.
[9] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York, 1980.
[10] Banaś, J.; Lecko, M.; El-Sayed, W.G., Existence theorems for some quadratic integral equations, J. math. anal. appl., 222, 267, (1998)
[11] A. Bielecki, Ordinary Differential Equations and Some Their Generalizations, Polish Academy of Science, Warsaw, 1961 (in Polish).
[12] P. Billingsley, Probability and Measure, Wiley, New York, 1979.
[13] Bitzer, C.W., Stieltjes-Volterra integral equations, Illinois J. math., 14, 434, (1970) · Zbl 0195.40301
[14] T.A. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983. · Zbl 0515.45001
[15] L.W. Busbridge, The Mathematics of Radiative Transfer, Cambridge Univ. Press, Cambridge, England, 1960. · Zbl 0090.21405
[16] Busbridge, L.W., On the H-function of Chandrasekhar, Quart. J. math. Oxford, ser., 8, 133, (1957) · Zbl 0084.32301
[17] Cahlon, B.; Eskin, M., Existence theorems for an integral equation of the Chandrasekhar H-equation with perturbation, J. math. anal. appl., 83, 159, (1981) · Zbl 0471.45002
[18] K.M. Case, P.F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA, 1967. · Zbl 0162.58903
[19] S. Chandrasekhar, Radiative Transfer, Oxford Univ. Press, London, 1950.
[20] Chen, S.; Huang, Q.; Erbe, L.H., Bounded and zero-convergent solutions of a class of Stieltjes integro-differential equations, Proc. amer. math. soc., 113, 999, (1991) · Zbl 0739.45005
[21] Crum, M., On an integral equation of Chandrasekhar, Quart. J. math. Oxford, ser., 18, 2, 244, (1947) · Zbl 0029.26901
[22] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. · Zbl 0559.47040
[23] N. Dunford, J. Schwartz, Linear Operators I, Int. Publ., Leyden, 1963.
[24] D.T. Dzhgarkava, On Volterra-Stieltjes type equations with an integral containing a finitely additive set-functions, Ir. Inst. Prikl. Mat. Im. I. N. Vekua. 30 (1988) 69 (in Russian). · Zbl 0729.45001
[25] Hu, S.; Khavanin, M.; Zhuang, W., Integral equations arising in the kinetic theory of gases, Appl. anal., 34, 261, (1989) · Zbl 0697.45004
[26] Kelly, C.T., Approximation of solutions of some quadratic integral equations in transport theory, J. integral equations, 4, 221, (1982) · Zbl 0495.45010
[27] M.A. Krasnosel’skii, P.P. Zabrejko, J.I. Pustyl’nik, P.J. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leiden, 1976.
[28] G.S. Ladde, V. Lakshmikantham, B.G. Zhang, Oscillation Theory of Differential Equations With Deviating Arguments, Pure and Applied Math., Marcel Dekker, New York, 1987. · Zbl 0622.34071
[29] Leggett, R.W., A new approach to the H-equation of Chandrasekhar, SIAM J. math., 7, 542, (1976) · Zbl 0331.45012
[30] Macnerney, J.S., Integral equations and semingroups, Illinous J. math., 7, 148, (1963) · Zbl 0142.09301
[31] A.B. Mingarelli, Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions, Lecture Notes in Mathematics, Vol. 989, Springer, Berlin, 1983. · Zbl 0516.45012
[32] A.D. Myškis, Linear Differential Equations With Retarded Argument, Nauka, Moscow, 1972 (in Russian) [German edition: Deutscher Verlag der Wissenschaften, Berlin 1955].
[33] I.P. Natanson, Theory of Functions of a Real Variable, Ungar, New York, 1960. · Zbl 0091.05404
[34] R. Sikorski, Real Functions, PWN, Warsaw, 1958 (in Polish).
[35] Stuart, C.A., Existence theorems for a class of nonlinear integral equations, Math. Z., 137, 49, (1974) · Zbl 0289.45013
[36] F.G. Tricomi, Integral Equations, Int. Publ., New York, 1957. · Zbl 0078.09404
[37] Vaz, P.T.; Deo, S.G., On a Volterra-Stieltjes integral equations, J. appl. math. stoch. anal., 3, 177, (1990) · Zbl 0703.45001
[38] P.P. Zabrejko, A.I. Koshelev, M.A. Krasnosel’skii, S.G. Mikhlin, L.S. Rakovschik, V.J. Stetsenko, Integral Equations, Noordhoff, Leiden, 1975.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.