Generalized AdS-CFT correspondence for Matrix theory in the large-\(N\) limit. (English) Zbl 0951.81057

Summary: Guided by the generalized conformal symmetry, we investigate the extension of AdS-CFT correspondence to the matrix model of D-particles in the large-\(N\) limit. We perform a complete harmonic analysis of the bosonic linearized fluctuations around a heavy D-particle background in IIA supergravity in 10 dimensions and find that the spectrum precisely agrees with that of the physical operators of Matrix theory. The explicit forms of two-point functions give predictions for the large-\(N\) behavior of Matrix theory with some special cutoff. We discuss the possible implications of our results for the large-\(N\) dynamics of D-particles and for the Matrix-theory conjecture. We find an anomalous scaling behavior with respect to the large-\(N\) limit associated to the infinite momentum limit in 11 dimensions, suggesting the existence of a screening mechanism for the transverse extension of the system.


81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
Full Text: DOI arXiv


[1] Maldacena, J., Adv. Theor. Math. Phys., 2, 231 (1998)
[2] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Phys. Lett. B, 428, 105 (1998)
[3] Witten, E., Adv. Theor. Math. Phys., 2, 505 (1998)
[4] Jevicki, A.; Kazama, Y.; Yoneya, T., Phys. Rev. Lett., 81, 5072 (1998)
[8] Jevicki, A.; Yoneya, T., Nucl. Phys. B, 535, 335 (1998)
[9] Yoneya, T., Mod. Phys. Lett. A, 4, 1587 (1989)
[10] Li, M.; Yoneya, T., Phys. Rev. Lett., 78, 1219 (1997)
[13] Itzhaki, N.; Maldacena, J.; Sonnenshein, J.; Yankielowicz, S., Phys. Rev. D, 58, 046004 (1998)
[14] Jevicki, A.; Kazama, Y.; Yoneya, T., Phys. Rev. D, 59, 066001 (1999)
[20] Banks, T.; Fischler, W.; Shenker, S. H.; Susskind, L., Phys. Rev. D, 55, 5112 (1997)
[22] Seiberg, N., Phys. Rev. Lett., 79, 3577 (1997)
[23] Sen, A., Adv. Theor. Math. Phys., 2, 51 (1998)
[24] Becker, K.; Becker, M.; Polchinski, J.; Tseytlin, A., Phys. Rev. D, 56, 3174 (1997)
[25] Okawa, Y.; Yoneya, T., Nucl. Phys. B, 538, 67 (1998)
[26] Okawa, Y.; Yoneya, T., Nucl. Phys. B, 541, 163 (1999)
[27] Douglas, M.; Kabat, D.; Pouliot, P.; Shenker, S., Nucl. Phys. B, 485, 85 (1997)
[28] Kim, H. J.; Romans, L. J.; van Nieuwenhuizen, P., Phys. Rev. D, 32, 389 (1985)
[29] Yoneya, T., Phys. Rev. D, 16, 2567 (1977)
[30] Kabat, D.; Taylor, W., Phys. Lett. B, 426, 297 (1998)
[31] Taylor, W.; Van Raamsdonk, M., J. High Energy Phys., 9904, 013 (1999)
[38] Maldacena, J., Phys. Rev. Lett., 80, 4859 (1998)
[41] Hashimoto, A.; Itzhaki, N., Phys. Lett. B, 454, 235 (1999)
[42] Awata, H.; Chaudhuri, S.; Li, M.; Minic, D., Phys. Rev. D, 57, 5303 (1998)
[44] Rubin, M. A.; Ordońẽz, C. R., J. Math. Phys., 25, 2888 (1984)
[45] Chodos, A.; Myers, E., Ann. Phys., 156, 412 (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.