×

Strict fine maxima. (English) Zbl 0954.60059

Summary: We provide a simple probabilistic proof of a result of J. Král and I. Netuka [Expo. Math. 5, 185-191 (1987; Zbl 0657.31009)]: If \(f\) is a measurable real-valued function on \({\mathbb{R}}^d\) \((d\geq 2)\), then the set of points at which \(f\) has a strict fine local maximum value is polar.

MSC:

60J45 Probabilistic potential theory
31C15 Potentials and capacities on other spaces
60J65 Brownian motion

Citations:

Zbl 0657.31009
PDF BibTeX XML Cite
Full Text: DOI EuDML EMIS