Fitzsimmons, P. J. Strict fine maxima. (English) Zbl 0954.60059 Electron. Commun. Probab. 5, 91-94 (2000). Summary: We provide a simple probabilistic proof of a result of J. Král and I. Netuka [Expo. Math. 5, 185-191 (1987; Zbl 0657.31009)]: If \(f\) is a measurable real-valued function on \({\mathbb{R}}^d\) \((d\geq 2)\), then the set of points at which \(f\) has a strict fine local maximum value is polar. MSC: 60J45 Probabilistic potential theory 31C15 Potentials and capacities on other spaces 60J65 Brownian motion Keywords:Brownian motion; fine topology; local maxima; optional projection Citations:Zbl 0657.31009 PDF BibTeX XML Cite \textit{P. J. Fitzsimmons}, Electron. Commun. Probab. 5, 91--94 (2000; Zbl 0954.60059) Full Text: DOI EuDML EMIS