×

Algebraic reduction of one-loop Feynman graph amplitudes. (English) Zbl 0956.81054

Summary: An algorithm for the reduction of one-loop \(n\)-point tensor integrals to basic integrals is proposed. We transform tensor integrals to scalar integrals with shifted dimension [A. I. Davydychev (1991)]and reduce these by recurrence relations to integrals in generic dimension [O. V. Tarasov (1996)]. Also the integration-by-parts method [F. V. Tkachov (1981); K. G. Chetyrkin, F. V. Tkachov (1981)]is used to reduce indices (powers of scalar propagators) of the scalar diagrams. The obtained recurrence relations for one-loop integrals are explicitly evaluated for 5- and 6-point functions. In the latter case the corresponding Gram determinant vanishes identically for \(d=4\), which greatly simplifies the application of the recurrence relations.

MSC:

81T18 Feynman diagrams

Software:

FORM; LERG-I
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Davydychev, A. I., Phys. Lett. B, 263, 107 (1991)
[2] Tarasov, O. V., Phys. Rev. D, 54, 6479 (1996)
[3] Tkachov, F. V., Phys. Lett. B, 100, 65 (1981)
[4] Chetyrkin, K. G.; Tkachov, F. V., Nucl. Phys. B, 192, 159 (1981)
[5] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Nucl. Phys. B, 560, 33 (1999)
[6] Aeppli, A.; Wyler, D., Phys. Lett. B, 262, 125 (1991)
[8] Vicini, A., Acta Phys. Polon. B, 29, 2847 (1998)
[9] Brown, L. M., Nuovo Cim., 22, 178 (1961)
[10] Halpern, F. R., Phys. Rev. Lett., 10, 310 (1963)
[11] Petersson, B., J. Math. Phys., 6, 1955 (1965)
[12] Melrose, D. B., Nuovo Cim. A, 40, 181 (1965)
[13] Passarino, G.; Veltman, M., Nucl. Phys. B, 160, 151 (1979)
[14] van Neerven, W. L.; Vermaseren, J. A.M., Phys. Lett. B, 137, 241 (1984)
[15] Stuart, R. G., Comput. Phys. Commun., 48, 367 (1988)
[16] Stuart, R. G., Comput. Phys. Commun., 56, 337 (1990)
[17] Stuart, R. G., Comput. Phys. Commun., 85, 267 (1995)
[18] van Oldenborgh, G. J.; Vermaseren, J. A.M., Z. Phys. C, 46, 425 (1990)
[19] Bern, Z.; Dixon, L.; Kosower, D. A., Phys. Lett. B, 302, 299 (1993)
[20] Bern, Z.; Dixon, L.; Kosower, D. A., Nucl. Phys. B, 412, 751 (1994)
[21] Campbell, J. M.; Glover, E. W.N.; Miller, D. J., Nucl. Phys. B, 498, 397 (1997)
[22] Devaraj, G.; Stuart, R. G., Nucl. Phys. B, 519, 483 (1998)
[23] Pittau, R., Comput. Phys. Commun., 104, 23 (1997)
[24] Pittau, R., Comput. Phys. Commun., 111, 48 (1998)
[25] Weinzierl, S., Phys. Lett. B, 450, 234 (1999)
[29] Tarasov, O. V., Nucl. Phys. B, 502, 455 (1997)
[30] Regge, T.; Barucchi, G., Nuovo Cim., 34, 106 (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.