×

Brane intersections, anti-de Sitter space-times and dual superconformal theories. (English) Zbl 0956.81060

Summary: We construct a class of intersecting brane solutions with horizon geometries of the form \(\text{AdS}_k\times S^l\times S^m\times E^n\). We describe how all these solutions are connected through the addition of a wave and/or monopoles. All solutions exhibit supersymmetry enhancement near the horizon. Furthermore we argue that string theory on these spaces is dual to specific superconformal field theories in two dimensions whose symmetry algebra in all cases contains the large \(N=4\) algebra \(A_{\gamma}\). Implications for gauged supergravities are also discussed.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Horava, P.; Witten, E., Heterotic and Type I string dynamics from eleven dimensions, Nucl. Phys. B, 460, 506 (1996), hep-th/9510209 · Zbl 1004.81525
[2] Cremmer, E.; Julia, B.; Scherk, J., Supergravity theory in eleven dimensions, Phys. Lett. B, 76, 409 (1978)
[3] Biran, B.; Englert, F.; de Wit, B.; Nicolai, H., Gauged \(N = 8\) supergravity and its breaking from spontaneous compactification, Phys. Lett. B, 124, 45 (1983)
[4] (Salam, A.; Sezgin, E., Supergravities in diverse dimensions, Vol. 1 (1989), World Scientific: World Scientific Singapore), Further references can be found in · Zbl 0686.53061
[5] Duff, M. J.; Nilsson, B. E.W.; Pope, C. N., Kaluza-Klein supergravity, Phys. Rep., 130, 1 (1986) · Zbl 0588.53073
[6] de Wit, B.; Nicolai, H., \(N = 8\) supergravity, Nucl. Phys. B, 208, 323 (1982)
[7] Bakas, I., Space-time interpretation of \(S\)-duality and supersymmetry violations of \(T\)-duality, Phys. Lett. B, 343, 103 (1995), hep-th/9410104
[8] Boonstra, H. J.; Peeters, B.; Skenderis, K., Duality and asymptotic geometries, Phys. Lett. B, 411, 59 (1997), hep-th/9706192
[11] Sfetsos, K.; Skenderis, K., Microscopic derivation of the Bekenstein-Hawking entropy formula for non-extremal black holes, Nucl. Phys. B, 517, 179 (1998), hep-th/9711138 · Zbl 0920.53048
[13] Kim, H. J.; Romans, L. J.; van Nieuwenhuizen, P., The mass spectrum of chiral \(N = 2, D = 10\) supergravity on \(S^5\), Phys. Rev. D, 32, 389 (1985)
[14] Flato, M.; Fronsdal, C., Phys. Lett. B, 97, 236 (1980), Interacting singletons, hep-th/9803013
[15] Bergshoeff, E.; Salam, A.; Sezgin, E.; Tanii, Y., \(N = 8\) supersingleton quantum field theory, Nucl. Phys. B, 305, 497 (1988), [FS23]
[16] Nicolai, H.; Sezgin, E.; Tanii, Y., Conformally invariant supersymmetric field theories on \(S^P × S^1\) and super \(P\)-branes, Nucl. Phys. B, 305, 483 (1988), [FS23]
[17] Gibbons, G. W.; Townsend, P. K., Vacuum interpolation in supergravity via super \(p\)-branes, Phys. Rev. Lett., 71, 3754 (1993), hep-th/9307049 · Zbl 0972.83598
[18] Günaydin, M.; Nilsson, B. E.W.; Sierra, G.; Townsend, P. K., Singletons and superstrings, Phys. Lett. B, 176, 45 (1986)
[20] Witten, E., Bound states of strings and \(p\)-branes, Nucl. Phys. B, 460, 335 (1996), hep-th/9510135 · Zbl 1003.81527
[22] Gubser, S. S.; Klebanov, I. R., Absorption by branes and Schwinger terms in the world volume theory, Phys. Lett. B, 413, 41 (1997), hep-th/9708005 · Zbl 0925.83052
[36] Giddings, S. B.; Polchinski, J.; Strominger, A., Four-dimensional black holes in string theory, Phys. Rev. D, 48, 5784 (1993), hep-th/9305083
[37] Lowe, D. A.; Strominger, A., Exact four-dimensional dyonic black holes and Bertotti-Robinson spacetimes in string theory, Phys. Rev. Lett., 73, 1468 (1994), hep-th/9403186 · Zbl 1020.83615
[38] Papadopoulos, G.; Townsend, P. K., Intersecting \(M\)-branes, Phys. Lett. B, 380, 273 (1996), hepth/9603087
[39] Tseytlin, A., No-force condition and BPS combinations of \(p\)-branes in 11 and 10 dimensions, Nucl. Phys. B, 487, 141 (1997), hep-th/9609212 · Zbl 0925.81233
[40] Khuri, R. R., A comment on string solitons, Phys. Rev. D, 48, 2947 (1993), hep-th/9305143
[41] Gauntlett, J. P.; Kastor, D. A.; Traschen, J., Overlapping branes in M-theory, Nucl. Phys. B, 478, 544 (1996), hep-th/9604179 · Zbl 0925.81199
[44] Argurio, R.; Englert, F.; Houart, L., Intersection rules for \(p\)-branes, Phys. Lett. B, 398, 61 (1997), hep-th/9701042
[47] Tseytlin, A. A., Extreme dyonic black holes in string theory, Mod. Phys. Lett. A, 11, 689 (1996), hep-th/9601177. · Zbl 1020.83680
[48] Bañados, M.; Teitelboim, C.; Zanelli, J., The black hole in three dimensional space time, Phys. Rev. Lett., 69, 1849 (1992), hep-th/9204099 · Zbl 0968.83514
[49] Bañados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J., Geometry of the (2 + 1) black hole, Phys. Rev. D, 48, 1506 (1993)
[50] Coussaert, O.; Henneaux, M., Supersymmetry of the 2 + 1 black holes, Phys. Rev. Lett., 72, 183 (1994), hep-th/9310194 · Zbl 0973.83530
[51] Lü, H.; Pope, C. N.; Townsend, P. K., Domain walls from anti-de Sitter space-time, Phys. Lett. B, 391, 39 (1997), hep-th/9607164 · Zbl 0956.83072
[53] Eguchi, T.; Gilkey, P.; Hanson, A., Gravitation, gauge theories and differential geometry, Phys. Rep., 66, 213 (1980)
[54] Bergshoeff, E.; de Roo, M.; Eyras, E.; Janssen, B.; van der Schaar, J. P., Intersections involving waves and monopoles in eleven dimensions, Class. Quant. Grav., 14, 2757 (1997), hep-th/9704120 · Zbl 0887.53068
[55] Gauntlett, J. P.; Gibbons, G. W.; Papadopoulos, G.; Townsend, P. K., Hyper-Kähler manifolds and multiply intersecting branes, Nucl. Phys. B, 500, 133 (1997), hep-th/9702202 · Zbl 0934.81064
[57] Gibbons, G. W.; Horowitz, G. T.; Townsend, P. K., Higher-dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav., 12, 297 (1995), hep-th/9410073 · Zbl 0817.53054
[58] Tseytlin, A. A., Composite BPS configurations of \(p\)-branes in 10 and 11 dimensions, Class. Quant. Grav., 14, 2085 (1997), hep-th/9702163 · Zbl 0940.83028
[59] Banks, T.; Fischler, W.; Shenker, S. H.; Susskind, L., M-theory as a Matrix model: A conjecture, Phys. Rev. D, 55, 5112 (1997), hep-th/9610043
[60] Günaydin, M.; Sierra, G.; Townsend, P. K., The unitary supermultiplets of \(d = 3\) anti de Sitter and \(d = 2\) conformal superalgebras, Nucl. Phys. B, 274, 429 (1986)
[61] Van Proeyen, A., Superconformal algebras, (Lee, H. C.; Elias, V.; Kunstatter, G.; Mann, R. B.; Viswanathan, K. S., Super field theories (1987), Plenum: Plenum New York) · Zbl 0697.17014
[62] Sevrin, A.; Troost, W.; Van Proeyen, A., Superconformal algebras in two dimensions with \(N = 4\), Phys. Lett. B, 208, 447 (1988)
[63] Ivanov, E.; Krivonos, S.; Leviant, V., Quantum \(N = 3, N = 4\) superconformal WZW sigma models, Phys. Lett. B, 215, 689 (1989)
[64] Horowitz, G. T.; Strominger, A., Black strings and \(p\)-branes, Nucl. Phys. B, 360, 197 (1991)
[65] Behrndt, K.; Bergshoeff, E.; Janssen, B., Intersecting D-branes in ten and six dimensions, Phys. Rev. D, 55, 3785 (1997), hep-th/9604168
[66] Duff, M. J.; Ferrara, S.; Khuri, R.; Rahmfeld, J., Supersymmetry and dual string solitons, Phys. Lett. B, 356, 479 (1995), hep-th/9506057
[67] Duff, M. J.; Lu, J. X., Black and super \(p\)-branes in diverse dimensions, Nucl. Phys. B, 416, 301 (1994), hep-th/9306052 · Zbl 1007.81530
[68] Park, Y.-J., Gauged Yang-Mills-Einstein supergravity with three index field in seven-dimensions, Phys. Rev. D, 38, 1087 (1988)
[69] Lü, H.; Pope, C. N.; Sezgin, E.; Stelle, K. S., Dilatonic \(p\)-branes solitons, Phys. Lett. B, 371, 46 (1996), hep-th/9511203
[70] Han, S. K.; Koh, I. G.; Lee, H.-W., Gauged seven-dimensional \(N = 2\) pure supergravity with two-form potential and its compactifications, Phys. Rev. D, 32, 3190 (1985)
[71] Salam, A.; Sezgin, E., \(d = 8\) supergravity, Nucl. Phys. B, 258, 284 (1985)
[73] Freedman, D. Z.; Schwarz, J. H., \(N = 4\) supergravity theory with local SU(2) × SU(2) invariance, Nucl. Phys. B, 137, 333 (1978)
[75] Freedman, D. Z.; Gibbons, G. W., Electrovac ground state in gauged SU(2) × SU(2) supergravity, Nucl. Phys. B, 233, 24 (1984)
[77] Freund, P. G.O.; Rubin, M. A., Dynamics of dimensional reduction, Phys. Lett. B, 97, 233 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.