Alzer, Horst Sharp bounds for the Bernoulli numbers. (English) Zbl 0960.11016 Arch. Math. 74, No. 3, 207-211 (2000). The classical Bernoulli numbers \(B_n\) \((n=0,1,2\ldots)\) can be defined by \[ \frac{x}{e^x-1}=\sum_{n=0}^\infty B_n\frac{x^n}{n!}, \] \(|x|< 2\pi\). In the paper under review the author gives the best possible constants \(\alpha\) and \(\beta\) such that \[ \frac{2(2n)!}{(2\pi)^{2n}}\frac 1{1-2^{\alpha-2n}} \leq |B_{2n}|\leq \frac{2(2n)!}{(2\pi)^{2n}}\frac 1{1-2^{\beta-2n}} \] holds for all integers \(n\geq 1\), namely \(\alpha=0\) and \(\beta=2+\frac{\log(1-6/\pi^2)}{\log(2)}\approx 0.6491\ldots\). Reviewer: Helmut Müller (Hamburg) Cited in 24 Documents MSC: 11B68 Bernoulli and Euler numbers and polynomials Keywords:Bernoulli numbers PDF BibTeX XML Cite \textit{H. Alzer}, Arch. Math. 74, No. 3, 207--211 (2000; Zbl 0960.11016) Full Text: DOI Digital Library of Mathematical Functions: §24.9 Inequalities ‣ Properties ‣ Chapter 24 Bernoulli and Euler Polynomials