Kubiaczyk, Ireneusz; Sikorska, Aneta Differential equations in Banach space and Henstock-Kurzweil integrals. (English) Zbl 0962.34043 Discuss. Math., Differ. Incl. 19, No. 1-2, 35-43 (1999). The authors establish the existence of solutions to the differential equation \(x'(t)= f(t, x(t))\) in a Banach space, under the key condition that \(f\) is Henstock-Kurzweil integrable. The theory is generalized to abstract differential inclusions. Reviewer: Sergiu Aizicovici (Athens/Ohio) Cited in 4 Documents MSC: 34G20 Nonlinear differential equations in abstract spaces 34A60 Ordinary differential inclusions Keywords:Henstock-Kurzweil integrals; existence; solutions; abstract differential inclusions PDF BibTeX XML Cite \textit{I. Kubiaczyk} and \textit{A. Sikorska}, Discuss. Math., Differ. Incl. 19, No. 1--2, 35--43 (1999; Zbl 0962.34043)