×

A least-squares finite element scheme for the EW equation. (English) Zbl 0963.76057

Summary: The equal width (EW) equation is solved by a least-squares technique using linear space-time finite elements. We show that in simulation of the migration of a single solitary wave this algorithm has good accuracy and conservation. The development of solitary waves from an arbitrary initial condition is examined within an EW environment.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76B25 Solitary waves for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peregrine, D. H., Calculations of the development of an undular bore, J. Fluid Mech., 25, 321-330 (1996)
[2] Bona, J. L.; Pritchard, W. G.; Scott, L. R., Numerical schemes for a model of nonlinear dispersive waves, J. Comput. Phys., 60, 167-186 (1985) · Zbl 0578.65120
[3] Morrison, P. J.; Meiss, J. D.; Carey, J. R., Scattering of RLW solitary waves, Physica, 11D, 324-336 (1981) · Zbl 0599.76028
[4] Gardner, L. R.T.; Gardner, G. A., Solitary waves of the regularized long wave equation, J. Comput. Phys., 91, 441-459 (1990) · Zbl 0717.65072
[5] Gardner, L. R.T.; Gardner, G. A., Solitary waves of the equal width wave equation, J. Comput. Phys., 101, 218-223 (1992) · Zbl 0759.65086
[6] Gardner, L. R.T.; Gardner, G. A.; Ayoub, F. A.; Amein, N. K., Simulations of the EW undular bore, Comput. Num. Methods Engrg., 13, 583-592 (1997) · Zbl 0883.76048
[7] Nguyen, N.; Reynen, J., A space-time least-square finite element scheme for advectiondiffusion equations, Comput. Methods Appl. Mech. Engrg., 42, 331-342 (1981) · Zbl 0517.76089
[8] N. Nguyen, J. Reynen, A space-time finite element approach to Burger’s equation, in: C. Taylor, E. Hinton, D.R.J. Owen, E. Onate (Eds.), Numerical Methods for Non-Linear Problems, vol. 2, Pineridge, Swansea, 1982, pp. 718-728; N. Nguyen, J. Reynen, A space-time finite element approach to Burger’s equation, in: C. Taylor, E. Hinton, D.R.J. Owen, E. Onate (Eds.), Numerical Methods for Non-Linear Problems, vol. 2, Pineridge, Swansea, 1982, pp. 718-728 · Zbl 0574.76053
[9] O.C. Zienkiewich, The Finite Element Method, 3rd ed., McGraw-Hill, London, 1977; O.C. Zienkiewich, The Finite Element Method, 3rd ed., McGraw-Hill, London, 1977 · Zbl 0435.73072
[10] Olver, P. J., Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Philos. Soc., 85, 143-159 (1979) · Zbl 0387.35050
[11] Gardner, L. R.T.; Gardner, G. A.; Dag, I., The boundary forced RLW equation, Nuovo Cimento, 110B, 1487-1496 (1995) · Zbl 0819.65125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.