Wang, Xiao Fan; Chen, Guanrong On feedback anticontrol of discrete chaos. (English) Zbl 0964.93039 Int. J. Bifurcation Chaos Appl. Sci. Eng. 9, No. 7, 1435-1441 (1999). The very purpose of this note is to prove that the algorithm of Chen and Lai for the anticontrol of chaos leads to chaos not only in the sense of Devaney but also in the sense of Li and Yorke, for both linear and nonlinear autonomous systems of any dimension. Reviewer: S.Sridhar (Sharjah) Cited in 42 Documents MSC: 93C10 Nonlinear systems in control theory 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior Keywords:anticontrol of chaos; linear and nonlinear autonomous systems PDFBibTeX XMLCite \textit{X. F. Wang} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 9, No. 7, 1435--1441 (1999; Zbl 0964.93039) Full Text: DOI References: [1] DOI: 10.1109/81.633897 · doi:10.1109/81.633897 [2] Bollt E., Int. J. Bifurcation and Chaos, to appear. (1999) [3] Chen G., IEEE Circuits Syst. Soc. Newsletter 1998 pp 1– (1998) [4] DOI: 10.1063/1.532670 · Zbl 0959.37027 · doi:10.1063/1.532670 [5] DOI: 10.1142/S021812749600076X · Zbl 0875.93157 · doi:10.1142/S021812749600076X [6] Chen G., Proc. IEEE Conf. Decison and Control, San Diego, CA pp 367– (1997) [7] DOI: 10.1142/S0218127498001236 · Zbl 0941.93522 · doi:10.1142/S0218127498001236 [8] Chen L., Physica 104 pp 286– (1997) [9] Holzfuss J., Arnold, L., Crauel, H. & Eckmann, J.-P. (1991) [10] DOI: 10.2307/2318254 · Zbl 0351.92021 · doi:10.2307/2318254 [11] DOI: 10.1016/0022-247X(78)90115-4 · Zbl 0381.58004 · doi:10.1016/0022-247X(78)90115-4 [12] DOI: 10.3792/pjaa.55.286 · Zbl 0451.58031 · doi:10.3792/pjaa.55.286 [13] DOI: 10.1080/00207178308933126 · Zbl 0525.93046 · doi:10.1080/00207178308933126 [14] DOI: 10.1016/0020-7462(85)90025-3 · Zbl 0632.93050 · doi:10.1016/0020-7462(85)90025-3 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.