Miyake, Katsuya (ed.) Class field theory – its centenary and prospect. Proceedings of the 7th MSJ International Research Institute of the Mathematical Society of Japan, Tokyo, Japan, June 3–12, 1998. (English) Zbl 0968.00031 Advanced Studies in Pure Mathematics. 30. Tokyo: Mathematical Society of Japan. 631 p. (2001). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Iyanaga, Shokichi, Memories of Professor Teiji Takagi [1875–1960], 1-11 [Zbl 1006.01017]Murty, Maruti Ram, On Artin \(L\)-functions, 13-29 [Zbl 1054.11057]Frei, Günther, How Hasse was led to the theory of quadratic forms, the local-global principle, the theory of the norm residue symbol, the reciprocity laws, and to class field theory, 31-62 [Zbl 1015.11001]Fesenko, Ivan, Nonabelian local reciprocity maps, 63-78 [Zbl 1039.11085]Nomura, Akito, Embedding problems with restricted ramifications and the class number of Hilbert class fields, 79-86 [Zbl 1039.11077]Koch, Helmut, The history of the theorem of Shafarevich in the theory of class formations, 87-105 [Zbl 1005.11061]Yamagishi, Masakazu, A survey of \(p\)-extensions, 107-121 [Zbl 1037.11067]Nguyen Quang Do, Thong, Galois module structure of \(p\)-class formations, 123-138 [Zbl 1097.11057]Zink, Thomas, A Dieudonné theory for \(p\)-divisible groups, 139-160 [Zbl 1052.14048]Stevenhagen, Peter, Hilbert’s 12th problem, complex multiplication and Shimura reciprocity, 161-176 [Zbl 1097.11535]Kohel, David R., Hecke module structure of quaternions, 177-195 [Zbl 1040.11044]Satake, Ichiro, On classification of semisimple algebraic groups, 197-216 [Zbl 1041.11024]Casselman, Bill, The \(L\)-group, 217-258 [Zbl 1035.11019]Gillard, Roland, Obstruction group for deformation of Galois representations, 259-285 [Zbl 1131.11342]Schoof, René, Abelian varieties over \(\mathbb{Q}(\sqrt 6)\) with good reduction everywhere, 287-306 [Zbl 1048.11047]Yanai, Hiromichi, Hodge cycles and unramified class fields, 307-312 [Zbl 1025.11020]Otsubo, Noriyuki, Recent progress on the finiteness of torsion algebraic cycles, 313-323 [Zbl 1084.14501]Sato, Kanetomo, Finiteness of a certain motivic cohomology group of varieties over local and global fields, 325-333 [Zbl 1034.14007]Greenberg, Ralph, Iwasawa theory – past and present, 335-385 [Zbl 0998.11054]Ozaki, Manabu, Iwasawa invariants of \(\mathbb Z_p\)-extensions over an imaginary quadratic field, 387-399 [Zbl 1002.11078]Taya, Hisao, On \(p\)-adic zeta functions and class groups of \(\mathbb Z_ p\)-extensions of certain totally real fields, 401-414 [Zbl 1041.11071]Kohnen, Winfried, Class numbers of imaginary quadratic fields, 415-417 [Zbl 1011.11073]Okazaki, Ryotaro, On parities of relative class numbers of certain CM-extensions, 419-444 [Zbl 0998.11060]Hahn, Sang Geun; Lee, Dong Hoon, Some congruences for binomial coefficients, 445-461 [Zbl 1070.11007]Cougnard, Jean, Stably free and not free rings of integers, 463-466 [Zbl 0996.11070]Ayadi, Mohammed; Azizi, Abdelmalek; Ismaili, Moulay Chrif, The capitulation problem for certain number fields, 467-482 [Zbl 1015.11055]Suzuki, Hiroshi, On the capitulation problem, 483-507 [Zbl 1032.11048]Morishita, Masanori; Watanabe, Takao, Adele geometry of numbers., 509-536 [Zbl 1047.11067]Ono, Takashi, On Shafarevich-Tate sets, 537-547 [Zbl 1040.11078]Roquette, Peter, Class field theory in characteristic \(p\), its origin and development, 549-631 [Zbl 1068.11073] Cited in 1 ReviewCited in 2 Documents MSC: 00B25 Proceedings of conferences of miscellaneous specific interest 11-06 Proceedings, conferences, collections, etc. pertaining to number theory 11R37 Class field theory 11R42 Zeta functions and \(L\)-functions of number fields Keywords:Class field theory; MSJ; Mathematical Society of Japan; Tokyo (Japan) Citations:Zbl 1006.01017; Zbl 1037.11067; Zbl 1097.11057; Zbl 1054.11057; Zbl 1052.14048; Zbl 1097.11535; Zbl 1040.11044; Zbl 1041.11024; Zbl 1035.11019; Zbl 1131.11342; Zbl 1048.11047; Zbl 1025.11020; Zbl 1015.11001; Zbl 1084.14501; Zbl 1034.14007; Zbl 0998.11054; Zbl 1002.11078; Zbl 1041.11071; Zbl 1011.11073; Zbl 0998.11060; Zbl 1070.11007; Zbl 0996.11070; Zbl 1015.11055; Zbl 1032.11048; Zbl 1040.11078; Zbl 1068.11073; Zbl 1039.11085; Zbl 1039.11077; Zbl 1005.11061; Zbl 1047.11067 × Cite Format Result Cite Review PDF