Bagnuls, C.; Bervillier, C. Exact renormalization group equations: an introductory review. (English) Zbl 0969.81596 Phys. Rep. 348, No. 1-2, 91-157 (2001). Summary: We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems. Cited in 86 Documents MSC: 81T17 Renormalization group methods applied to problems in quantum field theory Keywords:derivative expansion; scalar field; nonperturbative renormalization × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Wilson, K. G.; Kogut, J., The renormalization group and the \(ε\)-expansion, Phys. Rep., 12 C, 77 (1974) [2] B.I. Halperin, Exact renormalization group equations, in: J.D. Gunton, M.S. Green (Eds.), Renormalization group in Critical Phenomena and Quantum Field Theory, Proc. Conf. Chestnut Hill, 1973, NTIS, US Department of Commerce, Washington, 1974, p. 28.; B.I. Halperin, Exact renormalization group equations, in: J.D. Gunton, M.S. Green (Eds.), Renormalization group in Critical Phenomena and Quantum Field Theory, Proc. Conf. Chestnut Hill, 1973, NTIS, US Department of Commerce, Washington, 1974, p. 28. [3] K.G. Wilson, Irvine Conference, 1970, unpublished.; K.G. Wilson, Irvine Conference, 1970, unpublished. [4] Wegner, F. J.; Houghton, A., Renormalization group equation for critical phenomena, Phys. Rev. A, 8, 401 (1973) [5] Zinn-Justin, J., Euclidean Field Theory and Critical Phenomena (1996), Oxford University Press: Oxford University Press Oxford · Zbl 0865.00014 [6] F.J. Wegner, Differential form of the renormalization group, in: J.D. Gunton, M.S. Green (Eds.), Renormalization group in Critical Phenomena and Quantum Field Theory, Proc. Conf. Chestnut Hill, 1973, NTIS, US Department of Commerce, Washington, 1974, p. 46.; F.J. Wegner, Differential form of the renormalization group, in: J.D. Gunton, M.S. Green (Eds.), Renormalization group in Critical Phenomena and Quantum Field Theory, Proc. Conf. Chestnut Hill, 1973, NTIS, US Department of Commerce, Washington, 1974, p. 46. [7] Newman, K. E.; Riedel, E. K., Critical exponents by the scaling-field method: the isotropic \(N\)-vector model in three dimensions, Phys. Rev. B, 30, 6615 (1984) [8] Riedel, E. K.; Golner, G. R.; Newman, K. E., Scaling-field representation of Wilson’s exact renormalization-group equation, Ann. Phys. (N.Y.), 161, 178 (1985) · Zbl 0602.45002 [9] G.R. Golner, E.K. Riedel, Renormalization-group calculation of critical exponents in three dimensions, Phys. Rev. Lett. 34 (1975) 856; Scaling-field approach to the isotropic \(n\); G.R. Golner, E.K. Riedel, Renormalization-group calculation of critical exponents in three dimensions, Phys. Rev. Lett. 34 (1975) 856; Scaling-field approach to the isotropic \(n\) [10] Hasenfratz, A.; Hasenfratz, P., Renormalization group study of scalar field theories, Nucl. Phys. B, 270, FS16, 687 (1986) [11] Golner, G. R., Nonperturbative renormalization-group calculations for continuum spin systems, Phys. Rev. B, 33, 7863 (1986) [12] Polchinski, J., Renormalization and effective lagrangians, Nucl. Phys. B, 231, 269 (1984) [13] J. Berges, N. Tetradis, C. Wetterich, Non-perturbative renormalization flow in quantum field theory and statistical physics, hep-ph/0005122.; J. Berges, N. Tetradis, C. Wetterich, Non-perturbative renormalization flow in quantum field theory and statistical physics, hep-ph/0005122. · Zbl 0994.81077 [14] Jungnickel, D.-U.; Wetterich, C., Flow equations for phase transitions in statistical physics and QCD, (Krasnitz, A.; Potting, R.; Sá, P.; Kubyshin, Y. A., The Exact Renormalization Group (1999), World Scientific: World Scientific Singapore), 41 [15] D.-U. Jungnickel, C. Wetterich, Nonperturbative flow equations in QCD, Prog. Theor. Phys. 131 (1998) 495; Nonperturbative flow equations, low-energy QCD and chiral phase transition, in: P. van Baal (Ed.), Confinement, Duality, and Nonperturbative Aspects of QCD, Plenum Press, 1998, New York, p. 215.; D.-U. Jungnickel, C. Wetterich, Nonperturbative flow equations in QCD, Prog. Theor. Phys. 131 (1998) 495; Nonperturbative flow equations, low-energy QCD and chiral phase transition, in: P. van Baal (Ed.), Confinement, Duality, and Nonperturbative Aspects of QCD, Plenum Press, 1998, New York, p. 215. [16] Ivanchenko, Yu. M.; Lisyansky, A. A., Physics of Critical Fluctuations (1995), Springer: Springer New York [17] R.J. Creswick, H.A. Farach, C.P. Poole Jr., Introduction to Renormalization Group Methods in Physics, Wiley, New York, London, 1992. K. Huang, Quantum Field Theory, From Operators to Path Integrals, Wiley, New York, London, 1998.; R.J. Creswick, H.A. Farach, C.P. Poole Jr., Introduction to Renormalization Group Methods in Physics, Wiley, New York, London, 1992. K. Huang, Quantum Field Theory, From Operators to Path Integrals, Wiley, New York, London, 1998. · Zbl 0771.60093 [18] For a recent consideration of the scheme dependence, see J. Yang, A differential equation approach for examining the subtraction schemes, hep-th/0005195.; For a recent consideration of the scheme dependence, see J. Yang, A differential equation approach for examining the subtraction schemes, hep-th/0005195. [19] M.E. Fisher, Renormalization group theory: its basis and formulation in statistical physics, Rev. Mod. Phys. 70 (1998) 653; see also in: T.Y. Cao (Ed.), Conceptual Foundations of Quantum Field Theory, Cambridge University Press, Cambridge, 1999, p. 89.; M.E. Fisher, Renormalization group theory: its basis and formulation in statistical physics, Rev. Mod. Phys. 70 (1998) 653; see also in: T.Y. Cao (Ed.), Conceptual Foundations of Quantum Field Theory, Cambridge University Press, Cambridge, 1999, p. 89. · Zbl 1205.82072 [20] Wegner, F. J., Some invariance properties of the renormalization group, J. Phys. C, 7, 2098 (1974) [21] Wegner, F. J., The critical state, General aspects, (Domb, C.; Green, M. S., Phase Transitions and Critical Phenomena, Vol. VI (1976), Academic Press: Academic Press New York), 7 [22] Morris, T. R., Derivative expansion of the exact renormalization group, Phys. Lett. B, 329, 241 (1994) · Zbl 1190.81094 [23] Wegner, F. J., Corrections to scaling laws, Phys. Rev. B, 5, 4529 (1972) [24] G. Jona-Lasinio, Generalized renormalization transformations, in: B. Lundquist, S. Lundquist (Eds.), Collective Properties of Physical Systems, Nobel 24, Academic Press, New York, 1973, p. 28; M.S. Green, Invariance of critical exponents for renormalization groups generated by a flow vector, Phys. Rev. B 15 (1977) 5367.; G. Jona-Lasinio, Generalized renormalization transformations, in: B. Lundquist, S. Lundquist (Eds.), Collective Properties of Physical Systems, Nobel 24, Academic Press, New York, 1973, p. 28; M.S. Green, Invariance of critical exponents for renormalization groups generated by a flow vector, Phys. Rev. B 15 (1977) 5367. [25] Cardy, J., Scaling and Renormalization in Statistical Physics (1996), Cambridge University Press: Cambridge University Press Cambridge [26] Wilson, K. G.; Fisher, M. E., Critical exponents in 3.99 dimensions, Phys. Rev. Lett., 28, 240 (1972) [27] Hubbard, J.; Schofield, P., Wilson theory of a liquid-vapour critical point, Phys. Lett., 40A, 245 (1972) [28] Bell, T. L.; Wilson, K. G., Nonlinear renormalization groups, Phys. Rev. B, 10, 3935 (1974) [29] Bell, T. L.; Wilson, K. G., Finite-lattice approximations to renormalization groups, Phys. Rev. B, 11, 3431 (1975) [30] Comellas, J., Polchinski equation, reparameterization invariance and the derivative expansion, Nucl. Phys. B, 509, 662 (1998) · Zbl 0956.81048 [31] Ma, S. K., Introduction to the renormalization group, Rev. Mod. Phys., 45, 589 (1973) [32] Kadanoff, L. P., Scaling laws for Ising models near Tc, Physics, 2, 263 (1966) [33] Morris, T. R., The exact renormalization group and approximate solutions, Int. J. Mod. Phys. A, 9, 2411 (1994) · Zbl 0985.81604 [34] Comellas, J.; Travesset, A., O(N) models within the local potential approximation, Nucl. Phys. B, 498, 539 (1997) [35] Nicoll, J. F.; Chang, T. S.; Stanley, H. E., Exact and approximate differential renormalization-group generators, Phys. Rev. A, 13, 1251 (1976) [36] Warr, B. J., Renormalization of gauge theories using effective lagragians. I, Ann. Phys. (N.Y.), 183, 1 (1988) [37] Ball, R. D.; Thorne, R. S., Renormalizability of effective scalar field theory, Ann. Phys. (N.Y.), 236, 117 (1994) [38] Ball, R. D.; Haagensen, P. E.; Latorre, J. I.; Moreno, E., Scheme independence and the exact renormalization group, Phys. Lett. B, 347, 80 (1995) [39] Yu.M. Ivanchenko, A.A. Lisyansky, A.E. Filippov, Structure of the correlation function of a fluctuating system at the critical point, Theor. Math. Phys. 84 (1990) 829; New renormalization procedure for eliminating redundant operators, J. Stat. Phys. 66 (1992) 1139; Yu.M. Ivanchenko, A.A. Lisyansky, Generalized renormalization scheme in the Ginzburg-Landau-Wilson model, Phys. Rev. A 45 (1992) 8525; A.A. Lisyansky, D. Nicolaides, Exact renormalization group equation for systems of arbitrary symmetry free of redundant operators, J. Appl. Phys. 83 (1998) 6308.; Yu.M. Ivanchenko, A.A. Lisyansky, A.E. Filippov, Structure of the correlation function of a fluctuating system at the critical point, Theor. Math. Phys. 84 (1990) 829; New renormalization procedure for eliminating redundant operators, J. Stat. Phys. 66 (1992) 1139; Yu.M. Ivanchenko, A.A. Lisyansky, Generalized renormalization scheme in the Ginzburg-Landau-Wilson model, Phys. Rev. A 45 (1992) 8525; A.A. Lisyansky, D. Nicolaides, Exact renormalization group equation for systems of arbitrary symmetry free of redundant operators, J. Appl. Phys. 83 (1998) 6308. · Zbl 0900.82038 [40] Nicoll, J. F.; Chang, T. S., An exact one-particle-irreducible renormalization-group generator for critical phenomena, Phys. Lett., 62A, 287 (1977) [41] Chang, T. S.; Vvedensky, D. D.; Nicoll, J. F., Differential renormalization-group generators for static and dynamic critical phenomena, Phys. Rep., 217, 280 (1992) [42] Bonini, M.; D’Attanasio, M.; Marchesini, G., Perturbative renormalization and infrared finiteness in the Wilson renormalization group: the massless scalar case, Nucl. Phys. B, 409, 441 (1993) [43] Wetterich, C., Exact evolution equation for the effective potential, Phys. Lett. B, 301, 90 (1993) [44] Ellwanger, U., Flow equations for \(N\)-point functions and bound states, Z. Phys. C, 62, 503 (1994) [45] Nicoll, J. F.; Chang, T. S., Exact and approximate differential renormalization-group generators. II. The equation of state, Phys. Rev. A, 17, 2083 (1978) [46] Keller, G.; Kopper, C., Perturbative renormalization of QED via flow equations, Phys. Lett. B, 273, 323 (1991) [47] Keller, G.; Kopper, C.; Salmhofer, M., Perturbative renormalization and effective lagrangians in \(Φ_4^4\), Helv. Phys. Acta, 65, 32 (1992) [48] Morris, T. R., Momentum scale expansion of sharp cutoff flow equations, Nucl. Phys. B, 458, FS, 477 (1996) [49] Filippov, A. E., Solution of exact (local) renormalization-group equation, Theor. Math. Phys., 91, 551 (1992) [50] Ivanchenko, Yu. M.; Lisyansky, A. A.; Filippov, A. E., New small RG parameter, Phys. Lett. A, 150, 100 (1990) [51] P. Shukla, M.S. Green, \(εηε^2εηε^2\); P. Shukla, M.S. Green, \(εηε^2εηε^2\) [52] Myerson, R. J., Renormalization-group calculation of critical exponents for three-dimensional Ising-like systems, Phys. Rev. B, 12, 2789 (1975) [53] Weinberg, S., Critical phenomena for field theorists, (Zichichi, A., Understanding the Fundamental Constituents of Matter (1978), Plenum Press: Plenum Press New York, London), 1 [54] Wetterich, C., Average action and the renormalization group equations, Nucl. Phys. B, 352, 529 (1991) [55] Aoki, K.-I.; Morikawa, K.; Souma, W.; Sumi, J.-I.; Terao, H., Rapidly converging truncation scheme of the exact renormalization group, Prog. Theor. Phys., 99, 451 (1998) [56] Wetterich, C., Integrating out gluons in flow equations, Z. Phys. C, 72, 139 (1996) [57] U. Ellwanger, M. Hirsch, A. Weber, The heavy quark potential from Wilson’s exact renormalization group, Eur. Phys. J. C 1 (1998) 563; B. Bergerhoff, C. Wetterich, Effective quark interactions and QCD-propagators, Phys. Rev. D 57 (1998) 1591.; U. Ellwanger, M. Hirsch, A. Weber, The heavy quark potential from Wilson’s exact renormalization group, Eur. Phys. J. C 1 (1998) 563; B. Bergerhoff, C. Wetterich, Effective quark interactions and QCD-propagators, Phys. Rev. D 57 (1998) 1591. [58] Nicoll, J. F.; Zia, R. K.P., Fluid-magnet universality: Renormalization-group analysis of \(φ^5\) operators, Phys. Rev. B, 23, 6157 (1981) [59] T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 395; See also T.R. Morris in [176]; T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 395; See also T.R. Morris in [176] [60] P. Hasenfratz, Perfect actions—from the theoretical background to recent developments, Prog. Theor. Phys. Suppl. 131 (1998) 189; Perfect actions, in: P. van Baal (Ed.), Confinement, Duality, and Nonperturbative Aspects of QCD, Plenum Press, New York, 1998, p. 179.; P. Hasenfratz, Perfect actions—from the theoretical background to recent developments, Prog. Theor. Phys. Suppl. 131 (1998) 189; Perfect actions, in: P. van Baal (Ed.), Confinement, Duality, and Nonperturbative Aspects of QCD, Plenum Press, New York, 1998, p. 179. [61] Wilson, K. G., Renormalization of a scalar field theory in strong coupling, Phys. Rev. D, 6, 419 (1972) [62] Golner, G. R., Wave-function renormalization of a scalar field theory in strong coupling, Phys. Rev. D, 8, 3393 (1973) [63] K.G. Wilson, Field theoretic implications of the renormalization group, in: J.D. Gunton, M.S. Green (Eds.), Renormalization Group in Critical Phenomena and Quantum Field Theory, 1973, p. 157.; K.G. Wilson, Field theoretic implications of the renormalization group, in: J.D. Gunton, M.S. Green (Eds.), Renormalization Group in Critical Phenomena and Quantum Field Theory, 1973, p. 157. [64] Brézin, E.; Le Guillou, J. C.; Zinn-Justin, J., Field theoretical approach to critical phenomena, (Domb, C.; Green, M. S., Phase Transitions and Critical Phenomena, Vol. VI (1976), Academic Press: Academic Press New York), 125 [65] Morris, T. R., Three dimensional massive scalar field theory and the derivative expansion of the renormalization group, Nucl. Phys. B, 495, 477 (1997) [66] Morris, T. R.; Turner, M. D., Derivative expansion of the renormalization group in O(N) scalar field theory, Nucl. Phys. B, 509, 637 (1998) [67] Morris, T. R., New developments in the continuous renormalization group, (Damgaard, P. H.; Jurkiewicz, J., New Developments in Quantum Field Theory (1998), Plenum Press: Plenum Press New York, London), 147 · Zbl 0925.81108 [68] Morris, T. R., Properties of derivative expansion approximations to the renormalization group, Int. J. Mod. Phys. B, 12, 1343 (1998) · Zbl 1229.81201 [69] Morris, T. R., Comment on fixed-point structure of scalar fields, Phys. Rev. Lett., 77, 1658 (1996) [70] Gross, D. J.; Neveu, A., Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10, 3235 (1974) [71] B.E. Lautrup, On high order estimates in QED, Phys. Lett. 69 B (1977) 109. G. ’t Hooft, Can we make sense out of quantum electrodynamics?, in: A. Zichichi (Ed.), The Whys of Subnuclear Physics, Plenum Press, New York, 1979.; B.E. Lautrup, On high order estimates in QED, Phys. Lett. 69 B (1977) 109. G. ’t Hooft, Can we make sense out of quantum electrodynamics?, in: A. Zichichi (Ed.), The Whys of Subnuclear Physics, Plenum Press, New York, 1979. [72] Beneke, M., Renormalons, Phys. Rep., 317, 1 (1999) [73] Bagnuls, C.; Bervillier, C., Field-theoretic techniques in the study of critical phenomena, J. Phys. Stud., 1, 366 (1997) · Zbl 1079.82509 [74] C. Becchi, On the construction of renormalized gauge theories using renormalization group techniques, in: M. Bonini, G. Marchesini, E. Onofri (Eds.), Elementary Particle, Field Theory and Statistical Mechanics, Parma University, 1993; C. Kim, Wilson renormalization group and continuum effective field theories, in: D.-P. Min, Y. Oh (Editors), Effective Theories of Matter, Han Lim Won, Seoul, 1999, p. 11.; C. Becchi, On the construction of renormalized gauge theories using renormalization group techniques, in: M. Bonini, G. Marchesini, E. Onofri (Eds.), Elementary Particle, Field Theory and Statistical Mechanics, Parma University, 1993; C. Kim, Wilson renormalization group and continuum effective field theories, in: D.-P. Min, Y. Oh (Editors), Effective Theories of Matter, Han Lim Won, Seoul, 1999, p. 11. [75] Polchinski, J., Effective field theory and the Fermi surface, (Harvey, J.; Polchinski, J., Proceedings of the 1992 Theoretical Advanced Studies Institute in Elementary Particle Physics (1993), World Scientific: World Scientific Singapore), 235 [76] H.M. Georgi, Effective quantum field theories, in: P. Davies (Ed.), The New Physics, Cambridge University Press, 1989; G.P. Lepage, What is renormalization?, in: T. De Grand, D. Toussaint (Eds.), From Actions to Answers, Proceedings of the 1989 TASI Summer School Colorado, World Scientific, Singapore, 1990.; H.M. Georgi, Effective quantum field theories, in: P. Davies (Ed.), The New Physics, Cambridge University Press, 1989; G.P. Lepage, What is renormalization?, in: T. De Grand, D. Toussaint (Eds.), From Actions to Answers, Proceedings of the 1989 TASI Summer School Colorado, World Scientific, Singapore, 1990. [77] Wilson, K. G., Renormalization group and critical phenomena. II. Phase space cell analysis of critical behavior, Phys. Rev. B, 4, 3184 (1971) · Zbl 1236.82016 [78] G. Felder, Non-trivial renormalization group fixed points, in: Eighth International Congress on Mathematical Physics, Marseille, 1986; Renormalization group in the local potential approximation, Comm. Math. Phys. 111 (1987) 101.; G. Felder, Non-trivial renormalization group fixed points, in: Eighth International Congress on Mathematical Physics, Marseille, 1986; Renormalization group in the local potential approximation, Comm. Math. Phys. 111 (1987) 101. · Zbl 0632.35068 [79] F. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm. Math. Phys. 12 (1969) 91; An Ising magnet with discontinuous long range order, Comm. Math. Phys. 21 (1971) 269.; F. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm. Math. Phys. 12 (1969) 91; An Ising magnet with discontinuous long range order, Comm. Math. Phys. 21 (1971) 269. · Zbl 1306.47082 [80] J.F. Nicoll, T.S. Chang, H.E. Stanley, Approximate renormalization group based on the Wegner-Houghton differential generator, Phys. Rev. Lett. 33 (1974) 540; Erratum 33 (1974) 1525.; J.F. Nicoll, T.S. Chang, H.E. Stanley, Approximate renormalization group based on the Wegner-Houghton differential generator, Phys. Rev. Lett. 33 (1974) 540; Erratum 33 (1974) 1525. · Zbl 1329.81207 [81] Tokar, V. I., A new renormalization scheme in the Landau-Ginzburg-Wilson model, Phys. Lett. A, 104, 135 (1984) [82] Nicoll, J. F.; Chang, T. S.; Stanley, H. E., A differential generator for the free energy and the magnetization equation of state, Phys. Lett. A, 57, 7 (1976) [83] Tetradis, N.; Wetterich, C., Critical exponents from the effective average action, Nucl. Phys. B, 422, 541 (1994) [84] Zumbach, G., Almost second order phase transitions, Phys. Rev. Lett., 71, 2421 (1993) [85] Zumbach, G., The renormalization group in the local potential approximation and its applications to the \(O(n)\) model, Nucl. Phys. B, 413, 754 (1994) [86] Zumbach, G., The local potential approximation of the renormalization group and its applications, Phys. Lett. A, 190, 225 (1994) [87] M.J. Stephen, J.L. Mc Cauley Jr., Feynman graph expansion for tricritical exponents, Phys. Lett. A 44 (1973) 89; T.S. Chang, G.F. Tuthill, H.E. Stanley, Renormalization-group calculations of exponents for critical points of higher order, Phys. Rev. B 9 (1974) 4882. F.J. Wegner, Exponents for critical points of higher order, Phys. Lett. A 54 (1975) 1.; M.J. Stephen, J.L. Mc Cauley Jr., Feynman graph expansion for tricritical exponents, Phys. Lett. A 44 (1973) 89; T.S. Chang, G.F. Tuthill, H.E. Stanley, Renormalization-group calculations of exponents for critical points of higher order, Phys. Rev. B 9 (1974) 4882. F.J. Wegner, Exponents for critical points of higher order, Phys. Lett. A 54 (1975) 1. [88] K. Halpern, K. Huang, Fixed-point structure of scalar fields, Phys. Rev. Lett. 74 (1995) 3526; Non-trivial directions for scalar fields, Phys. Rev. D 53 (1996) 3252.; K. Halpern, K. Huang, Fixed-point structure of scalar fields, Phys. Rev. Lett. 74 (1995) 3526; Non-trivial directions for scalar fields, Phys. Rev. D 53 (1996) 3252. [89] V. Periwal, Halpern-Huang directions in effective scalar field theory, Mod. Phys. Lett. A 11 (1996) 2915; A. Bonanno, Non-perturbative scaling in the scalar theory, Phys. Rev. D 62 (2000) 027; V. Periwal, Halpern-Huang directions in effective scalar field theory, Mod. Phys. Lett. A 11 (1996) 2915; A. Bonanno, Non-perturbative scaling in the scalar theory, Phys. Rev. D 62 (2000) 027 [90] Halpern, K., Cross section and effective potential in asymptotically free scalar field theories, Phys. Rev. D, 57, 6337 (1998) [91] Halpern, K.; Huang, K., Reply to Comment on fixed-point structure of scalar fields, Phys. Rev. Lett., 77, 1659 (1996) [92] Sailer, K.; Greiner, W., Non-trivial fixed points of the scalar field theory, Acta Phys. Hung.: Heavy Ion Phys., 5, 41 (1997) [93] Filippov, A. E.; Breus, S. A., On the physical branch of the exact (local) RG equation, Phys. Lett., A 158, 300 (1991) [94] Breus, S. A.; Filippov, A. E., Study of a local RG approximation, Physica, A 192, 486 (1993) [95] Morris, T. R., On truncations of the exact renormalization group, Phys. Lett., B 334, 355 (1994) [96] Bagnuls, C.; Bervillier, C., Field theoretical approach to critical phenomena, Phys. Rev., B 41, 402 (1990) · Zbl 0979.81067 [97] P.E. Haagensen, Y. Kubyshin, J.I. Latorre, E. Moreno, The exact renormalization group and approximations, in: Proceedings of the International Seminar Quarks 94, World Scientific, Singapore, 1995, p. 422.; P.E. Haagensen, Y. Kubyshin, J.I. Latorre, E. Moreno, The exact renormalization group and approximations, in: Proceedings of the International Seminar Quarks 94, World Scientific, Singapore, 1995, p. 422. [98] A. Parola, L. Reatto, Liquid-state theory for critical phenomena, Phys. Rev. Lett. 53 (1984) 2417; Hierarchical reference theory of fluids and the critical point, Phys. Rev. A 31 (1985) 3309.; A. Parola, L. Reatto, Liquid-state theory for critical phenomena, Phys. Rev. Lett. 53 (1984) 2417; Hierarchical reference theory of fluids and the critical point, Phys. Rev. A 31 (1985) 3309. [99] A. Parola, L. Reatto, Liquid state theories and critical phenomena, Adv. in Phys. 44 (1995) 211; L. Reatto, A. Parola, Liquid-state theory and the renormalization group reconciled: a theory of phase transitions in fluids, J. Phys.: Condens. Matter 8 (1996) 9221.; A. Parola, L. Reatto, Liquid state theories and critical phenomena, Adv. in Phys. 44 (1995) 211; L. Reatto, A. Parola, Liquid-state theory and the renormalization group reconciled: a theory of phase transitions in fluids, J. Phys.: Condens. Matter 8 (1996) 9221. [100] Guida, R.; Zinn-Justin, J., Critical Exponents of the N-vector model, J. Phys., A 31, 8103 (1998) · Zbl 0978.82037 [101] Bagnuls, C.; Bervillier, C., Renormalization group domains of the scalar Hamiltonian, Condens. Matter Phys., 3, 559 (2000) [102] C. Bagnuls, C. Bervillier, M. Shpot, unpublished.; C. Bagnuls, C. Bervillier, M. Shpot, unpublished. [103] Aoki, K. I.; Morikawa, K.; Souma, W.; Sumi, J.-I.; Terao, H., The effectiveness of the local potential approximation in the Wegner-Houghton renormalization group, Prog. Theor. Phys., 95, 409 (1996) [104] Morris, T. R., The renormalization group and two dimensional multicritical effective scalar field theory, Phys. Lett., B 345, 139 (1995) [105] Liao, S.-B.; Polonyi, J.; Strickland, M., Optimization of renormalization group flow, Nucl. Phys., B 567, 493 (2000) · Zbl 0951.81022 [106] Margaritis, A.; Ódor, G.; Patkós, A., Series expansion solution of the Wegner-Houghton renormalisation group equation, Z. Phys. C, 39, 109 (1988) [107] Haagensen, P. E.; Kubyshin, Y.; Latorre, J. I.; Moreno, E., Gradient flows from an approximation to the exact renormalization group, Phys. Lett., B 323, 330 (1994) [108] Alford, M., Critical exponents without the epsilon expansion, Phys. Lett., B 336, 237 (1994) [109] Hughes, J.; Liu, J., \(β\)-functions and the exact renormalization group, Nucl. Phys., B 307, 183 (1988) [110] T. Papenbrock, C. Wetterich, Two-loop results from improved one loop computations, Z. Phys. C 65 (1995) 519; P. Kopietz, Two-loop beta-function from the exact renormalization group, Nucl. Phys. B 595 (2001) 493.; T. Papenbrock, C. Wetterich, Two-loop results from improved one loop computations, Z. Phys. C 65 (1995) 519; P. Kopietz, Two-loop beta-function from the exact renormalization group, Nucl. Phys. B 595 (2001) 493. · Zbl 0972.81118 [111] Brilliantov, N. V.; Bagnuls, C.; Bervillier, C., Peculiarity of the Coulombic criticality?, Phys. Lett., A 245, 274 (1998) [112] Zumbach, G., Phase transitions with \(O(n)\) symmetry broken down to \(O(n\)−\(p)\), Nucl. Phys., B 413, 771 (1994) [113] Tetradis, N., Renormalization-group study of weakly first-order phase transitions, Phys. Lett., B 431, 380 (1998) [114] Tetradis, N.; Litim, D. F., Analytical solutions of exact renormalization group equations, Nucl. Phys., B 464 (FS), 492 (1996) · Zbl 1004.82505 [115] Filippov, A. E., Attractor properties of physical branches of the solution to the renormalization-group equation, Theor. Math. Phys., 117, 1423 (1998) · Zbl 0941.82027 [116] K. Symanzik, Massless \(φ^4ε\); K. Symanzik, Massless \(φ^4ε\) [117] Bagnuls, C.; Bervillier, C., Nonperturbative nature of the renormalization group, Phys. Rev. Lett., 60, 1464 (1988) [118] T.H. Berlin, M. Kac, The spherical model of a ferromagnet, Phys. Rev. 86 (1952) 821; H.E. Stanley, Spherical model as the limit of infinite spin dimensionality, Phys. Rev. 176 (1968) 718.; T.H. Berlin, M. Kac, The spherical model of a ferromagnet, Phys. Rev. 86 (1952) 821; H.E. Stanley, Spherical model as the limit of infinite spin dimensionality, Phys. Rev. 176 (1968) 718. [119] D’Attanasio, M.; Morris, T. R., Large \(N\) and the renormalization group, Phys. Lett., B 409, 363 (1997) [120] Wallace, D. J.; Zia, R. K.P., Gradient flow and the renormalization group, Phys. Lett., A 48, 325 (1974) [121] Wallace, D. J.; Zia, R. K.P., Gradient properties of the renormalization group equations in multicomponent systems, Ann. Phys. (N.Y.), 92, 142 (1975) [122] Generowicz, J.; Harvey-Fros, C.; Morris, T. R., C function representation of the local potential approximation, Phys. Lett., B 407, 27 (1997) [123] Zamolodchikov, A. B., ‘Irreversibility’ of the flux of the renormalization group in \(2D\) field theory, JETP Lett., 43, 730 (1986) [124] Myers, R. C.; Periwal, V., Flow of low energy couplings in the Wilson renormalization group, Phys. Rev. D, 57, 2448 (1998) [125] Dashen, R.; Neuberger, H., How to get an upper bound on the Higgs mass, Phys. Rev. Lett., 50, 1897 (1983) [126] Glashow, S. L., Partial-symmetries of weak interactions, Nucl. Phys., 22, 579 (1961) [127] P. Hasenfratz, J. Nager, The Higgs meson mass and the scale of new physics, in the standard model, in: Z. Horvath, L. Palla, A. Patkós (Eds.), Non-perturbative Methods in Quantum Field Theory, World Scientific, Singapore, 1987; The Higgs meson mass and the scale of new physics in the standard model, Acta Phys. Hung. 64 (1988) 147; The cut-off dependence of the Higgs meson mass and the onset of new physics in the standard model, Z. Phys. C 37 (1988) 477.; P. Hasenfratz, J. Nager, The Higgs meson mass and the scale of new physics, in the standard model, in: Z. Horvath, L. Palla, A. Patkós (Eds.), Non-perturbative Methods in Quantum Field Theory, World Scientific, Singapore, 1987; The Higgs meson mass and the scale of new physics in the standard model, Acta Phys. Hung. 64 (1988) 147; The cut-off dependence of the Higgs meson mass and the onset of new physics in the standard model, Z. Phys. C 37 (1988) 477. [128] Hasenfratz, A., The standard model from action to answers, (De Grand, T.; Toussaint, D., From Actions to Answers. From Actions to Answers, Proceedings of the 1989 TASI Summer School Colorado (1990), World Scientific: World Scientific Singapore), 133 [129] T.E. Clark, B. Haeri, S.T. Love, M.A. Walker, W.T.A. ter Veldhuis, Mass bounds in the standard model, Phys. Rev. D 50 (1994) 606; K. Kimura, A.I. Sanda, Y. Sugiyama, Triviality bound of linear \(σ\); T.E. Clark, B. Haeri, S.T. Love, M.A. Walker, W.T.A. ter Veldhuis, Mass bounds in the standard model, Phys. Rev. D 50 (1994) 606; K. Kimura, A.I. Sanda, Y. Sugiyama, Triviality bound of linear \(σ\) [130] Wilson, K. G., Renormalization group and strong interactions, Phys. Rev. D, 3, 1818 (1971) [131] Susskind, L., Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D, 20, 2619 (1979) [132] ’t Hooft, G., Naturalness, Chiral symmetry, and spontaneous chiral symmetry breaking, (Hooft, ’t; Jaffe, Itzykson; Mitter, Lehman; Stora, Singer, Recent Development in Gauge Field Theories (1980), Plenum Press: Plenum Press New York), 135 [133] Weinberg, S., The problem of mass, Trans. N.Y. Acad. Sci. Ser. II, 38, 185 (1977) [134] P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132; Broken symmetries and the masses of the gauge bosons, Phys. Rev. Lett. 13 (1964) 508; Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156.; P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132; Broken symmetries and the masses of the gauge bosons, Phys. Rev. Lett. 13 (1964) 508; Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156. [135] R. Jackiw, K. Johnson, Dynamical model of spontaneously broken gauge symmetries, Phys. Rev. D 8 (1973) 2386; S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974; S. Dimopoulos, L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979) 237.; R. Jackiw, K. Johnson, Dynamical model of spontaneously broken gauge symmetries, Phys. Rev. D 8 (1973) 2386; S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974; S. Dimopoulos, L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979) 237. [136] A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333; D. Friedan, Z. Qiu, S. Shenker, Conformal invariance, unitarity and critical exponents in two dimensions, Phys. Rev. Lett. 52 (1984) 1575.; A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333; D. Friedan, Z. Qiu, S. Shenker, Conformal invariance, unitarity and critical exponents in two dimensions, Phys. Rev. Lett. 52 (1984) 1575. · Zbl 0661.17013 [137] Kubyshin, Y.; Neves, R.; Potting, R., Polchinski ERG equation and 2D scalar field theory, (Krasnitz, A.; Potting, R.; Sá, P.; Kubyshin, Y. A., The Exact Renormalization Group (1999), World Scientific: World Scientific Singapore), 159 [138] Wetterich, C., The average action for scalar fields near phase transitions, Z. Phys. C, 57, 451 (1993) [139] N. Tetradis, C. Wetterich, The high temperature phase transition for \(φ^4\); N. Tetradis, C. Wetterich, The high temperature phase transition for \(φ^4\) [140] R. Floreanini, R. Percacci, The heat-kernel and the average effective potential, Phys. Lett. B 356 (1995) 205; S.-B. Liao, Connection between momentum cutoff and operator cutoff regularizations, Phys. Rev. D 53 (1996) 2020.; R. Floreanini, R. Percacci, The heat-kernel and the average effective potential, Phys. Lett. B 356 (1995) 205; S.-B. Liao, Connection between momentum cutoff and operator cutoff regularizations, Phys. Rev. D 53 (1996) 2020. [141] A. Bonanno, D. Zappalà, Towards an accurate determination of the critical exponents with the renormalization group flow equations, Phys. Lett. B 504 (2001) 181.; A. Bonanno, D. Zappalà, Towards an accurate determination of the critical exponents with the renormalization group flow equations, Phys. Lett. B 504 (2001) 181. · Zbl 0977.81094 [142] Oleszczuk, M., A symmetry preserving cutoff regularization, Z. Phys. C, 64, 533 (1994) [143] O. Bohr, B.-J. Schaefer, J. Wambach, Renormalization group flow equations and the phase transition in O(N)-models, hep-ph/0007098.; O. Bohr, B.-J. Schaefer, J. Wambach, Renormalization group flow equations and the phase transition in O(N)-models, hep-ph/0007098. · Zbl 1012.81037 [144] S.-B. Liao, C.-Y. Lin, M. Strickland, Self-consistent renormalization group flow, hep-th/0010100.; S.-B. Liao, C.-Y. Lin, M. Strickland, Self-consistent renormalization group flow, hep-th/0010100. [145] A.E. Filippov, A.V. Radievskii, Perturbation theory based on the physical branch of the renormalization-group equation, JETP Lett. 56 (1992) 87; Gradient expansion based on the physical RG branch, Phys. Lett. A 169 (1992) 195; A new perturbation theory based on the physical branch of the solution of the renormalization-group equation, Sov. Phys.-JETP 75 (1992) 1022.; A.E. Filippov, A.V. Radievskii, Perturbation theory based on the physical branch of the renormalization-group equation, JETP Lett. 56 (1992) 87; Gradient expansion based on the physical RG branch, Phys. Lett. A 169 (1992) 195; A new perturbation theory based on the physical branch of the solution of the renormalization-group equation, Sov. Phys.-JETP 75 (1992) 1022. [146] A. Bonanno, V. Branchina, H. Mohrbach, D. Zappalà, Wegner-Houghton equation and derivative expansion, Phys. Rev. D. 60 (1999) 065; A. Bonanno, V. Branchina, H. Mohrbach, D. Zappalà, Wegner-Houghton equation and derivative expansion, Phys. Rev. D. 60 (1999) 065 [147] Bonanno, A.; Zappalà, D., Two loop results from the derivative expansion of the blocked action, Phys. Rev. D, 57, 7383 (1998) [148] Berges, J.; Tetradis, N.; Wetterich, C., Critical equation of state from the average action, Phys. Rev. Lett., 77, 873 (1996) [149] Gräter, M.; Wetterich, C., Kosterlitz-Thouless phase transition in the two dimensional linear \(σ\) model, Phys. Rev. Lett., 75, 378 (1995) [150] J.M. Kosterlitz. D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems J. Phys. C 6 (1973) 1181; J.M. Kosterlitz, The critical properties of the two-dimensional xy model, J. Phys. C 7 (1974) 1046.; J.M. Kosterlitz. D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems J. Phys. C 6 (1973) 1181; J.M. Kosterlitz, The critical properties of the two-dimensional xy model, J. Phys. C 7 (1974) 1046. [151] G.V. Gersdorff, C. Wetterich, Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition, hep-th/0008114.; G.V. Gersdorff, C. Wetterich, Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition, hep-th/0008114. [152] Morris, T. R.; Tighe, J. F., Convergence of derivative expansions of the renormalization group, J. High Energy Phys., 08, 007 (1999) [153] G.V. Dunne, An all-orders derivative expansion, Int. J. Mod. Phys. A 12 (1997) 1143; G.V. Dunne, T.M. Hall, Borel summation of the derivative expansion and effective actions, Phys. Rev. D 60 (1999) 065; G.V. Dunne, An all-orders derivative expansion, Int. J. Mod. Phys. A 12 (1997) 1143; G.V. Dunne, T.M. Hall, Borel summation of the derivative expansion and effective actions, Phys. Rev. D 60 (1999) 065 [154] G.R. Golner, Exact renormalization group flow equations for free energies and N-point functions in uniform external fields, hep-th/9801124.; G.R. Golner, Exact renormalization group flow equations for free energies and N-point functions in uniform external fields, hep-th/9801124. [155] D.F. Litim, Scheme independence at first order phase transitions and the renormalisation group, Phys. Lett. B 393 (1997) 103; Optimisation of the exact renormalisation group, Phys. Lett. B 486 (2000) 92, hep-th/0103195; J.-I. Sumi, W. Souma, K.-I. Aoki, H. Terao, K. Morikawa, Scheme dependence of the Wilsonian effective action and sharp cutoff limit of the flow equation, hep-th/0002231; J.I. Latorre, T.R. Morris, Exact scheme independence, J. High Energy Phys. 11 (2000) 004.; D.F. Litim, Scheme independence at first order phase transitions and the renormalisation group, Phys. Lett. B 393 (1997) 103; Optimisation of the exact renormalisation group, Phys. Lett. B 486 (2000) 92, hep-th/0103195; J.-I. Sumi, W. Souma, K.-I. Aoki, H. Terao, K. Morikawa, Scheme dependence of the Wilsonian effective action and sharp cutoff limit of the flow equation, hep-th/0002231; J.I. Latorre, T.R. Morris, Exact scheme independence, J. High Energy Phys. 11 (2000) 004. [156] Aoki, K.-I., Introduction to the non-perturbative renormalization group and its recent applications, Int. J. Mod. Phys., B 14, 1249 (2000) · Zbl 1219.81199 [157] R.J. Creswick, F.W. Wiegel, Renormalization theory of the interacting Bose fluid, Phys. Rev. A 28 (1983) 1579; J.O. Andersen, M. Strickland, Critical behaviour of a homogeneous Bose gas at finite temperature, cond-mat/9808346; Application of renormalization group techniques to a homogeneous Bose gas at finite temperature, Phys. Rev. A 60 (1999) 1442; T. Gollisch, C. Wetterich, Equation of state for helium-4 from microphysics, cond-mat/0101254.; R.J. Creswick, F.W. Wiegel, Renormalization theory of the interacting Bose fluid, Phys. Rev. A 28 (1983) 1579; J.O. Andersen, M. Strickland, Critical behaviour of a homogeneous Bose gas at finite temperature, cond-mat/9808346; Application of renormalization group techniques to a homogeneous Bose gas at finite temperature, Phys. Rev. A 60 (1999) 1442; T. Gollisch, C. Wetterich, Equation of state for helium-4 from microphysics, cond-mat/0101254. [158] J.D. Gunton, M.C. Yalabik, Renormalization-group analysis of the mean-field theory of metastability: a spinodal fixed point, Phys. Rev. B 18 (1978) 6199; G. Dee, J.D. Gunton, K. Kawasaki, An exact solution of the renormalization-group equations for the mean-field theory of stable and metastable states, J. Stat. Phys. 24 (1981) 87; K. Kawasaki, T. Imaeda, J.D. Gunton, Coarse-grained Helmotz free energy functional, in: H.J. Raveché (Ed.), Perspective in Statistical Physics, North-Holland, Amsterdam, 1981, p. 201.; J.D. Gunton, M.C. Yalabik, Renormalization-group analysis of the mean-field theory of metastability: a spinodal fixed point, Phys. Rev. B 18 (1978) 6199; G. Dee, J.D. Gunton, K. Kawasaki, An exact solution of the renormalization-group equations for the mean-field theory of stable and metastable states, J. Stat. Phys. 24 (1981) 87; K. Kawasaki, T. Imaeda, J.D. Gunton, Coarse-grained Helmotz free energy functional, in: H.J. Raveché (Ed.), Perspective in Statistical Physics, North-Holland, Amsterdam, 1981, p. 201. [159] D.S. Fisher, D.A. Huse, Wetting transitions: A functional renormalization-group approach, Phys. Rev. B 32 (1985) 247; R. Lipowsky, M.E. Fisher, Scaling regimes and functional renormalization for wetting transitions, Phys. Rev. B 36 (1987) 2126.; D.S. Fisher, D.A. Huse, Wetting transitions: A functional renormalization-group approach, Phys. Rev. B 32 (1985) 247; R. Lipowsky, M.E. Fisher, Scaling regimes and functional renormalization for wetting transitions, Phys. Rev. B 36 (1987) 2126. [160] Hazareesing, A.; Bouchaud, J.-P., Functional renormalization description of the roughening transition, Eur. Phys. J., B 14, 713 (2000) [161] B. Delamotte, D. Mouhanna, P. Lecheminant, Wilson renormalization group approach of the principal chiral model around two dimensions, Phys. Rev. B 59 (1999) 6006; M. Tissier, D. Mouhanna, B. Delamotte, Nonperturbative approach of the principal chiral model between two and four dimensions, Phys. Rev. B 61 (1999) 15327; M. Tissier, B. Delamotte, D. Mouhanna, Frustrated Heisenberg magnets: a nonperturbative approach, Phys. Rev. Lett. 84 (2000) 5208.; B. Delamotte, D. Mouhanna, P. Lecheminant, Wilson renormalization group approach of the principal chiral model around two dimensions, Phys. Rev. B 59 (1999) 6006; M. Tissier, D. Mouhanna, B. Delamotte, Nonperturbative approach of the principal chiral model between two and four dimensions, Phys. Rev. B 61 (1999) 15327; M. Tissier, B. Delamotte, D. Mouhanna, Frustrated Heisenberg magnets: a nonperturbative approach, Phys. Rev. Lett. 84 (2000) 5208. [162] D.S. Fisher, Random fields, random anisotropies, nonlinear sigma models, and dimensional reduction, Phys. Rev. B 31 (1985) 7233; Interface fluctuations in disordered systems: \(5-ε\); D.S. Fisher, Random fields, random anisotropies, nonlinear sigma models, and dimensional reduction, Phys. Rev. B 31 (1985) 7233; Interface fluctuations in disordered systems: \(5-ε\) [163] A. Horikoshi, Non-perturbative renormalization group and quantum tunnelling, in: A. Krasnitz, R. Potting, P. Sá, Y.A. Kubyshin (Eds.), The Exact Renormalization Group, World Scientific, Singapore, 1999, p. 194; A.S. Kapoyannis, N. Tetradis, Quantum-mechanical tunnelling and the renormalization group, hep-th/0010180.; A. Horikoshi, Non-perturbative renormalization group and quantum tunnelling, in: A. Krasnitz, R. Potting, P. Sá, Y.A. Kubyshin (Eds.), The Exact Renormalization Group, World Scientific, Singapore, 1999, p. 194; A.S. Kapoyannis, N. Tetradis, Quantum-mechanical tunnelling and the renormalization group, hep-th/0010180. [164] P. Tomassini, An exact renormalization group analysis of 3-d well developed turbulence, Phys. Lett. B 411 (1997) 117; R. Collina, P. Tomassini, On the ERG approach in 3−\(d\); P. Tomassini, An exact renormalization group analysis of 3-d well developed turbulence, Phys. Lett. B 411 (1997) 117; R. Collina, P. Tomassini, On the ERG approach in 3−\(d\) [165] P. Gosselin, B. Grosdidier, H. Mohrbach, Renormalization group at finite temperature in quantum mechanics, Phys. Lett. A 256 (1999) 125; P. Gosselin, H. Mohrbach, Renormalization group in quantum mechanics, J. Phys. A 33 (2000) 6343.; P. Gosselin, B. Grosdidier, H. Mohrbach, Renormalization group at finite temperature in quantum mechanics, Phys. Lett. A 256 (1999) 125; P. Gosselin, H. Mohrbach, Renormalization group in quantum mechanics, J. Phys. A 33 (2000) 6343. · Zbl 1064.81526 [166] N. Tetradis, C. Wetterich, in [139]\(Nφ^4[157]ϕ^4\); N. Tetradis, C. Wetterich, in [139]\(Nφ^4[157]ϕ^4\) [167] D.F. Litim, Wilsonian flow equation and thermal field theory, hep-ph/9811272; J. Berges, QCD in extreme conditions and the Wilsonian ‘exact renormalization group’, in: D.-P. Min, Y. Oh (Editors), Effective Theories of Matter, Han Lim Wong, Seoul, 1999, p. 34, hep-ph/9902419.; D.F. Litim, Wilsonian flow equation and thermal field theory, hep-ph/9811272; J. Berges, QCD in extreme conditions and the Wilsonian ‘exact renormalization group’, in: D.-P. Min, Y. Oh (Editors), Effective Theories of Matter, Han Lim Wong, Seoul, 1999, p. 34, hep-ph/9902419. [168] J. Comellas, Y. Kubyshin, E. Moreno, Exact renormalization group study of fermionic theories, Nucl. Phys. B 490 (1997) 653; H. Kodama, J.-I. Sumi, Application of non-perturbative renormalization group to Nambu-Jona-Lasinio/Gross-Neveu model at finite temperature and chemical potential, Prog. Theor. Phys. 103 (2000) 393; L. Rosa, P. Vitale, C. Wetterich, Critical exponents of the Gross-Neveu model from the effective average action, Phys. Rev. Lett. 86 (2001) 958; M. Salmhofer, Continuous renormalization for fermions and Fermi liquid theory, Comm. Math. Phys. 194 (1998) 249; D. Zanchi, H.J. Schulz, Weakly correlated electrons on a square lattice: a renormalization group theory, Phys. Rev. B 61 (2000) 13; J. Comellas, Y. Kubyshin, E. Moreno, Exact renormalization group study of fermionic theories, Nucl. Phys. B 490 (1997) 653; H. Kodama, J.-I. Sumi, Application of non-perturbative renormalization group to Nambu-Jona-Lasinio/Gross-Neveu model at finite temperature and chemical potential, Prog. Theor. Phys. 103 (2000) 393; L. Rosa, P. Vitale, C. Wetterich, Critical exponents of the Gross-Neveu model from the effective average action, Phys. Rev. Lett. 86 (2001) 958; M. Salmhofer, Continuous renormalization for fermions and Fermi liquid theory, Comm. Math. Phys. 194 (1998) 249; D. Zanchi, H.J. Schulz, Weakly correlated electrons on a square lattice: a renormalization group theory, Phys. Rev. B 61 (2000) 13 [169] M. Maggiore, Non-perturbative renormalization group for field theories with scalars and fermions, Z. Phys. C 41 (1989) 687; T.E. Clark, B. Haeri, S.T. Love, Wilson renormalization group analysis of theories with scalars and fermions, Nucl. Phys. B 402 (1993) 628; S.-B. Liao, J. Polonyi, Mass generation at finite temperature, Nucl. Phys. A 570 (1994) 203c; S.-B. Liao, J. Polonyi, D. Xu, Quantum and thermal fluctuations in field theory, Phys. Rev. D 51 (1995) 748; D.-U. Jungnickel, C. Wetterich, Effective action for the chiral quark-meson model, Phys. Rev. D 53 (1996) 5142; D.-U. Jungnickel, Chiral dynamics from the exact RG, Nucl. Phys. A 663-664 (2000) 987c; J. Berges, D.-U. Jungnickel, C. Wetterich, Two flavor chiral phase transition from nonperturbative flow equations, Phys. Rev. D 59 (1999) 034; M. Maggiore, Non-perturbative renormalization group for field theories with scalars and fermions, Z. Phys. C 41 (1989) 687; T.E. Clark, B. Haeri, S.T. Love, Wilson renormalization group analysis of theories with scalars and fermions, Nucl. Phys. B 402 (1993) 628; S.-B. Liao, J. Polonyi, Mass generation at finite temperature, Nucl. Phys. A 570 (1994) 203c; S.-B. Liao, J. Polonyi, D. Xu, Quantum and thermal fluctuations in field theory, Phys. Rev. D 51 (1995) 748; D.-U. Jungnickel, C. Wetterich, Effective action for the chiral quark-meson model, Phys. Rev. D 53 (1996) 5142; D.-U. Jungnickel, Chiral dynamics from the exact RG, Nucl. Phys. A 663-664 (2000) 987c; J. Berges, D.-U. Jungnickel, C. Wetterich, Two flavor chiral phase transition from nonperturbative flow equations, Phys. Rev. D 59 (1999) 034 [170] J. Comellas, Y. Kubyshin, E. Moreno, Approximate solutions in scalar and fermionic theories within the exact renormalization group approach, in: Proceedings of the Xth International Workshop on High Energy Physics and Quantum Field Theory, Moscow University Press, 1996, p. 249; J. Comellas, Exact renormalization group with fermions, hep-th/9609236; Y. Kubyshin, Exact renormalization group approach in scalar and fermionic theories, Int. J. Mod. Phys. B 12 (1998) 1321.; J. Comellas, Y. Kubyshin, E. Moreno, Approximate solutions in scalar and fermionic theories within the exact renormalization group approach, in: Proceedings of the Xth International Workshop on High Energy Physics and Quantum Field Theory, Moscow University Press, 1996, p. 249; J. Comellas, Exact renormalization group with fermions, hep-th/9609236; Y. Kubyshin, Exact renormalization group approach in scalar and fermionic theories, Int. J. Mod. Phys. B 12 (1998) 1321. [171] M. Reuter, C. Wetterich, Effective average action for gauge theories and exact evolution equations, Nucl. Phys. B 417 (1994) 181; Gluon condensation in nonperturbative flow equations, Phys. Rev. D 56 (1997) 7893; M. Reuter, Effective average action of Chern-Simons field theory, Phys. Rev. D 53 (1996) 4430; D.F. Litim, J.M. Pawlowski, Flow equations for Yang-Mills theories in general axial gauges, Phys. Lett. B 435 (1998) 181; On general axial gauges for QCD, Nucl. Phys. Proc. Suppl. B 74 (1999) 329; On gauge invariance and Ward identities for the Wilsonian renormalisation group, Nucl. Phys. Proc. Suppl. B 74 (1999) 325; F. Freire, D.F. Litim, J.M. Pawlowski, Gauge invariance and background field formalism in the exact renormalisation group, Phys. Lett. B 495 (2000) 256; U. Ellwanger, Flow equations and BRS invariance for Yang-Mills theories, Phys. Lett. B 335 (1994) 364; U. Ellwanger, M. Hirsch, A. Weber, Flow equations for the relevant part of the pure Yang-Mills action, Z. Phys. C 69 (1996) 687; U. Ellwanger, Wilsonian effective action with an auxiliary field for the field strength, in: A. Krasnitz, R. Potting, P. Sá, Y.A. Kubyshin (Eds.), The Exact Renormalization Group, World Scientific, Singapore, 1999, p. 142; M. Bonini, M. D’Attanasio, G. Marchesini, Renormalization group flow for SU(2) Yang-Mills theory and gauge invariance, Nucl. Phys. B 421 (1994) 429; BRS symmetry for Yang-Mills theory with exact renormalization group, Nucl. Phys. B 437 (1995) 163; Perturbative infrared finiteness of Yang-Mills theory from renormalization group flow, Nucl. Phys. B 444 (1995) 602; BRS symmetry from renormalization group flow, Phys. Lett. B 346 (1995) 87; M. Bonini, M. Tricarico, Fine-tuning and the Wilson renormalization group, Nucl. Phys. B 585 (2000) 253; M. D’Attanasio, M. Pietroni, Gauge-invariant renormalization group at finite temperature, Nucl. Phys. B 498 (1997) 443; T.R. Morris, Non-compact pure gauge QED in 3D is free, Phys. Lett. B 357 (1995) 225; M. D’Attanasio, T.R. Morris, Gauge invariance, the quantum action principle, and the renormalization group, Phys. Lett. B 378 (1996) 213; T.R. Morris, A gauge invariant exact renormalization group I, Nucl. Phys. B 573 (2000) 97; A gauge invariant exact renormalization group II, J. High Energy Phys. 12 (2000) 012; S.-B. Liao, Operator cutoff regularization and renormalization group in Yang-Mills theory, Phys. Rev. D 56 (1997) 5008; S. Hirano, Exact renormalization group and loop equation, Phys. Rev. D 61 (2000) 125; M. Reuter, C. Wetterich, Effective average action for gauge theories and exact evolution equations, Nucl. Phys. B 417 (1994) 181; Gluon condensation in nonperturbative flow equations, Phys. Rev. D 56 (1997) 7893; M. Reuter, Effective average action of Chern-Simons field theory, Phys. Rev. D 53 (1996) 4430; D.F. Litim, J.M. Pawlowski, Flow equations for Yang-Mills theories in general axial gauges, Phys. Lett. B 435 (1998) 181; On general axial gauges for QCD, Nucl. Phys. Proc. Suppl. B 74 (1999) 329; On gauge invariance and Ward identities for the Wilsonian renormalisation group, Nucl. Phys. Proc. Suppl. B 74 (1999) 325; F. Freire, D.F. Litim, J.M. Pawlowski, Gauge invariance and background field formalism in the exact renormalisation group, Phys. Lett. B 495 (2000) 256; U. Ellwanger, Flow equations and BRS invariance for Yang-Mills theories, Phys. Lett. B 335 (1994) 364; U. Ellwanger, M. Hirsch, A. Weber, Flow equations for the relevant part of the pure Yang-Mills action, Z. Phys. C 69 (1996) 687; U. Ellwanger, Wilsonian effective action with an auxiliary field for the field strength, in: A. Krasnitz, R. Potting, P. Sá, Y.A. Kubyshin (Eds.), The Exact Renormalization Group, World Scientific, Singapore, 1999, p. 142; M. Bonini, M. D’Attanasio, G. Marchesini, Renormalization group flow for SU(2) Yang-Mills theory and gauge invariance, Nucl. Phys. B 421 (1994) 429; BRS symmetry for Yang-Mills theory with exact renormalization group, Nucl. Phys. B 437 (1995) 163; Perturbative infrared finiteness of Yang-Mills theory from renormalization group flow, Nucl. Phys. B 444 (1995) 602; BRS symmetry from renormalization group flow, Phys. Lett. B 346 (1995) 87; M. Bonini, M. Tricarico, Fine-tuning and the Wilson renormalization group, Nucl. Phys. B 585 (2000) 253; M. D’Attanasio, M. Pietroni, Gauge-invariant renormalization group at finite temperature, Nucl. Phys. B 498 (1997) 443; T.R. Morris, Non-compact pure gauge QED in 3D is free, Phys. Lett. B 357 (1995) 225; M. D’Attanasio, T.R. Morris, Gauge invariance, the quantum action principle, and the renormalization group, Phys. Lett. B 378 (1996) 213; T.R. Morris, A gauge invariant exact renormalization group I, Nucl. Phys. B 573 (2000) 97; A gauge invariant exact renormalization group II, J. High Energy Phys. 12 (2000) 012; S.-B. Liao, Operator cutoff regularization and renormalization group in Yang-Mills theory, Phys. Rev. D 56 (1997) 5008; S. Hirano, Exact renormalization group and loop equation, Phys. Rev. D 61 (2000) 125 [172] M. Reuter, C. Wetterich, Average action for the Higgs model with Abelian gauge symmetry, Nucl. Phys. B 391 (1993) 147; Running gauge coupling in three dimensions and the electroweak phase transition, Nucl. Phys. B 408 (1993) 91; Exact evolution equations for scalar electrodynamics, Nucl. Phys. B 427 (1994) 291; B. Bergerhoff, C. Wetterich, The strongly interacting electroweak phase transition, Nucl. Phys. B 440 (1995) 171; B. Bergerhoff, F. Freire, D.F. Litim, S. Lola, C. Wetterich, Phase diagram of superconductors from nonperturbative flow equations, Phys. Rev. B 53 (1996) 5734; B. Bergerhoff, D.F. Litim, S. Lola, C. Wetterich, Phase transition of \(N\); M. Reuter, C. Wetterich, Average action for the Higgs model with Abelian gauge symmetry, Nucl. Phys. B 391 (1993) 147; Running gauge coupling in three dimensions and the electroweak phase transition, Nucl. Phys. B 408 (1993) 91; Exact evolution equations for scalar electrodynamics, Nucl. Phys. B 427 (1994) 291; B. Bergerhoff, C. Wetterich, The strongly interacting electroweak phase transition, Nucl. Phys. B 440 (1995) 171; B. Bergerhoff, F. Freire, D.F. Litim, S. Lola, C. Wetterich, Phase diagram of superconductors from nonperturbative flow equations, Phys. Rev. B 53 (1996) 5734; B. Bergerhoff, D.F. Litim, S. Lola, C. Wetterich, Phase transition of \(N\) [173] M. Bonini, M. D’Attanasio, G. Marchesini, Ward identities and Wilson renormalization group for QED, Nucl. Phys. B 418 (1994) 81; Axial anomalies in gauge theory by exact renormalization group method Phys. Lett. B 329 (1994) 249; M. Bonini, F. Vian, Chiral gauge theories and anomalies in the Wilson renormalization group approach, Nucl. Phys. B 511 (1998) 479; U. Ellwanger, C. Wetterich, Evolution equations for the quark-meson transition, Nucl. Phys. B 423 (1994) 137; M. Pernici, M. Raciti, F. Riva, Hard-soft renormalization and the exact renormalization group, Nucl. Phys. B 520 (1998) 469; M. Simionato, Gauge consistent Wilson renormalization group I: the Abelian case, Int. J. Mod. Phys. A 15 (2000) 2121; II: the non-Abelian case, ibid. 2153; K.-I. Aoki, K. Morikawa, J.-I. Sumi, H. Terao, M. Tomoyose, Non-perturbative renormalization group analysis of the chiral critical behaviors in QED, Prog. Theor. Phys. 97 (1997) 479; Analysis of the Wilsonian effective potentials in dynamical chiral symmetry breaking, Phys. Rev. D 61 (2000) 045; M. Bonini, M. D’Attanasio, G. Marchesini, Ward identities and Wilson renormalization group for QED, Nucl. Phys. B 418 (1994) 81; Axial anomalies in gauge theory by exact renormalization group method Phys. Lett. B 329 (1994) 249; M. Bonini, F. Vian, Chiral gauge theories and anomalies in the Wilson renormalization group approach, Nucl. Phys. B 511 (1998) 479; U. Ellwanger, C. Wetterich, Evolution equations for the quark-meson transition, Nucl. Phys. B 423 (1994) 137; M. Pernici, M. Raciti, F. Riva, Hard-soft renormalization and the exact renormalization group, Nucl. Phys. B 520 (1998) 469; M. Simionato, Gauge consistent Wilson renormalization group I: the Abelian case, Int. J. Mod. Phys. A 15 (2000) 2121; II: the non-Abelian case, ibid. 2153; K.-I. Aoki, K. Morikawa, J.-I. Sumi, H. Terao, M. Tomoyose, Non-perturbative renormalization group analysis of the chiral critical behaviors in QED, Prog. Theor. Phys. 97 (1997) 479; Analysis of the Wilsonian effective potentials in dynamical chiral symmetry breaking, Phys. Rev. D 61 (2000) 045 [174] M. Bonini, F. Vian, Wilson renormalization group from supersymmetric gauge theories and gauge anomalies, Nucl. Phys. B 532 (1998) 473; S. Arnone, C. Fusi, K. Yoshida, Exact renormalization group equation in presence of rescaling anomaly, J. High Energy Phys. 02 (1999) 022.; M. Bonini, F. Vian, Wilson renormalization group from supersymmetric gauge theories and gauge anomalies, Nucl. Phys. B 532 (1998) 473; S. Arnone, C. Fusi, K. Yoshida, Exact renormalization group equation in presence of rescaling anomaly, J. High Energy Phys. 02 (1999) 022. [175] A. Bonanno, Coarse-graining and renormalization group in the Einstein universe, Phys. Rev. D 52 (1995) 969; A. Bonanno, D. Zappalà, Non-perturbative renormalization group approach for a scalar theory in higher-derivative gravity, Phys. Rev. D 55 (1997) 6135; M. Reuter, C. Wetterich, Quantum Liouville field theory as solution of a flow equation, Nucl. Phys. B 506 (1997) 483; M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971; A. Bonanno, M. Reuter, Quantum gravity effects near the null black hole singularity, Phys. Rev. D \(60 (1999) 084N\); A. Bonanno, Coarse-graining and renormalization group in the Einstein universe, Phys. Rev. D 52 (1995) 969; A. Bonanno, D. Zappalà, Non-perturbative renormalization group approach for a scalar theory in higher-derivative gravity, Phys. Rev. D 55 (1997) 6135; M. Reuter, C. Wetterich, Quantum Liouville field theory as solution of a flow equation, Nucl. Phys. B 506 (1997) 483; M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971; A. Bonanno, M. Reuter, Quantum gravity effects near the null black hole singularity, Phys. Rev. D \(60 (1999) 084N\) [176] M. Reuter, Effective average actions and nonperturbative evolution equation, hep-th/9602012. K.-I. Aoki, Non-perturbative renormalization group approach to dynamical chiral symmetry breaking in gauge theories, in: Proceedings of the International Workshop on Perspectives of Strong Coupling Gauge Theories (SCGT96), 1997; K.-I. Aoki, Solving the dynamical chiral symmetry breaking by non-perturbative renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 129; T.R. Morris, The exact renormalization group, and a manifestly gauge invariant version, in: A. Krasnitz, R. Potting, P. Sá, Y.A. Kubyshin (Eds.), The Exact Renormalization Group, World Scientific, Singapore, 1999, p. 1; D.F. Litim, J.M. Pawlowski, On gauge invariant Wilsonian flows, ibid. p. 168; F. Vian, Supersymmetric gauge theories in the exact renormalization group approach, ibid. p. 150; J.-I. Sumi, Non-perturbative analysis of the chiral critical behavior in QED, ibid. p. 186.; M. Reuter, Effective average actions and nonperturbative evolution equation, hep-th/9602012. K.-I. Aoki, Non-perturbative renormalization group approach to dynamical chiral symmetry breaking in gauge theories, in: Proceedings of the International Workshop on Perspectives of Strong Coupling Gauge Theories (SCGT96), 1997; K.-I. Aoki, Solving the dynamical chiral symmetry breaking by non-perturbative renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 129; T.R. Morris, The exact renormalization group, and a manifestly gauge invariant version, in: A. Krasnitz, R. Potting, P. Sá, Y.A. Kubyshin (Eds.), The Exact Renormalization Group, World Scientific, Singapore, 1999, p. 1; D.F. Litim, J.M. Pawlowski, On gauge invariant Wilsonian flows, ibid. p. 168; F. Vian, Supersymmetric gauge theories in the exact renormalization group approach, ibid. p. 150; J.-I. Sumi, Non-perturbative analysis of the chiral critical behavior in QED, ibid. p. 186. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.