×

Exact renormalization group equations: an introductory review. (English) Zbl 0969.81596

Summary: We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

MSC:

81T17 Renormalization group methods applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Wilson, K. G.; Kogut, J., The renormalization group and the \(ε\)-expansion, Phys. Rep., 12 C, 77 (1974)
[4] Wegner, F. J.; Houghton, A., Renormalization group equation for critical phenomena, Phys. Rev. A, 8, 401 (1973)
[5] Zinn-Justin, J., Euclidean Field Theory and Critical Phenomena (1996), Oxford University Press: Oxford University Press Oxford · Zbl 0865.00014
[7] Newman, K. E.; Riedel, E. K., Critical exponents by the scaling-field method: the isotropic \(N\)-vector model in three dimensions, Phys. Rev. B, 30, 6615 (1984)
[8] Riedel, E. K.; Golner, G. R.; Newman, K. E., Scaling-field representation of Wilson’s exact renormalization-group equation, Ann. Phys. (N.Y.), 161, 178 (1985) · Zbl 0602.45002
[10] Hasenfratz, A.; Hasenfratz, P., Renormalization group study of scalar field theories, Nucl. Phys. B, 270, FS16, 687 (1986)
[11] Golner, G. R., Nonperturbative renormalization-group calculations for continuum spin systems, Phys. Rev. B, 33, 7863 (1986)
[12] Polchinski, J., Renormalization and effective lagrangians, Nucl. Phys. B, 231, 269 (1984)
[14] Jungnickel, D.-U.; Wetterich, C., Flow equations for phase transitions in statistical physics and QCD, (Krasnitz, A.; Potting, R.; Sá, P.; Kubyshin, Y. A., The Exact Renormalization Group (1999), World Scientific: World Scientific Singapore), 41
[16] Ivanchenko, Yu. M.; Lisyansky, A. A., Physics of Critical Fluctuations (1995), Springer: Springer New York
[20] Wegner, F. J., Some invariance properties of the renormalization group, J. Phys. C, 7, 2098 (1974)
[21] Wegner, F. J., The critical state, General aspects, (Domb, C.; Green, M. S., Phase Transitions and Critical Phenomena, Vol. VI (1976), Academic Press: Academic Press New York), 7
[22] Morris, T. R., Derivative expansion of the exact renormalization group, Phys. Lett. B, 329, 241 (1994) · Zbl 1190.81094
[23] Wegner, F. J., Corrections to scaling laws, Phys. Rev. B, 5, 4529 (1972)
[25] Cardy, J., Scaling and Renormalization in Statistical Physics (1996), Cambridge University Press: Cambridge University Press Cambridge
[26] Wilson, K. G.; Fisher, M. E., Critical exponents in 3.99 dimensions, Phys. Rev. Lett., 28, 240 (1972)
[27] Hubbard, J.; Schofield, P., Wilson theory of a liquid-vapour critical point, Phys. Lett., 40A, 245 (1972)
[28] Bell, T. L.; Wilson, K. G., Nonlinear renormalization groups, Phys. Rev. B, 10, 3935 (1974)
[29] Bell, T. L.; Wilson, K. G., Finite-lattice approximations to renormalization groups, Phys. Rev. B, 11, 3431 (1975)
[30] Comellas, J., Polchinski equation, reparameterization invariance and the derivative expansion, Nucl. Phys. B, 509, 662 (1998) · Zbl 0956.81048
[31] Ma, S. K., Introduction to the renormalization group, Rev. Mod. Phys., 45, 589 (1973)
[32] Kadanoff, L. P., Scaling laws for Ising models near Tc, Physics, 2, 263 (1966)
[33] Morris, T. R., The exact renormalization group and approximate solutions, Int. J. Mod. Phys. A, 9, 2411 (1994) · Zbl 0985.81604
[34] Comellas, J.; Travesset, A., O(N) models within the local potential approximation, Nucl. Phys. B, 498, 539 (1997)
[35] Nicoll, J. F.; Chang, T. S.; Stanley, H. E., Exact and approximate differential renormalization-group generators, Phys. Rev. A, 13, 1251 (1976)
[36] Warr, B. J., Renormalization of gauge theories using effective lagragians. I, Ann. Phys. (N.Y.), 183, 1 (1988)
[37] Ball, R. D.; Thorne, R. S., Renormalizability of effective scalar field theory, Ann. Phys. (N.Y.), 236, 117 (1994)
[38] Ball, R. D.; Haagensen, P. E.; Latorre, J. I.; Moreno, E., Scheme independence and the exact renormalization group, Phys. Lett. B, 347, 80 (1995)
[40] Nicoll, J. F.; Chang, T. S., An exact one-particle-irreducible renormalization-group generator for critical phenomena, Phys. Lett., 62A, 287 (1977)
[41] Chang, T. S.; Vvedensky, D. D.; Nicoll, J. F., Differential renormalization-group generators for static and dynamic critical phenomena, Phys. Rep., 217, 280 (1992)
[42] Bonini, M.; D’Attanasio, M.; Marchesini, G., Perturbative renormalization and infrared finiteness in the Wilson renormalization group: the massless scalar case, Nucl. Phys. B, 409, 441 (1993)
[43] Wetterich, C., Exact evolution equation for the effective potential, Phys. Lett. B, 301, 90 (1993)
[44] Ellwanger, U., Flow equations for \(N\)-point functions and bound states, Z. Phys. C, 62, 503 (1994)
[45] Nicoll, J. F.; Chang, T. S., Exact and approximate differential renormalization-group generators. II. The equation of state, Phys. Rev. A, 17, 2083 (1978)
[46] Keller, G.; Kopper, C., Perturbative renormalization of QED via flow equations, Phys. Lett. B, 273, 323 (1991)
[47] Keller, G.; Kopper, C.; Salmhofer, M., Perturbative renormalization and effective lagrangians in \(Φ_4^4\), Helv. Phys. Acta, 65, 32 (1992)
[48] Morris, T. R., Momentum scale expansion of sharp cutoff flow equations, Nucl. Phys. B, 458, FS, 477 (1996)
[49] Filippov, A. E., Solution of exact (local) renormalization-group equation, Theor. Math. Phys., 91, 551 (1992)
[50] Ivanchenko, Yu. M.; Lisyansky, A. A.; Filippov, A. E., New small RG parameter, Phys. Lett. A, 150, 100 (1990)
[52] Myerson, R. J., Renormalization-group calculation of critical exponents for three-dimensional Ising-like systems, Phys. Rev. B, 12, 2789 (1975)
[53] Weinberg, S., Critical phenomena for field theorists, (Zichichi, A., Understanding the Fundamental Constituents of Matter (1978), Plenum Press: Plenum Press New York, London), 1
[54] Wetterich, C., Average action and the renormalization group equations, Nucl. Phys. B, 352, 529 (1991)
[55] Aoki, K.-I.; Morikawa, K.; Souma, W.; Sumi, J.-I.; Terao, H., Rapidly converging truncation scheme of the exact renormalization group, Prog. Theor. Phys., 99, 451 (1998)
[56] Wetterich, C., Integrating out gluons in flow equations, Z. Phys. C, 72, 139 (1996)
[58] Nicoll, J. F.; Zia, R. K.P., Fluid-magnet universality: Renormalization-group analysis of \(φ^5\) operators, Phys. Rev. B, 23, 6157 (1981)
[61] Wilson, K. G., Renormalization of a scalar field theory in strong coupling, Phys. Rev. D, 6, 419 (1972)
[62] Golner, G. R., Wave-function renormalization of a scalar field theory in strong coupling, Phys. Rev. D, 8, 3393 (1973)
[64] Brézin, E.; Le Guillou, J. C.; Zinn-Justin, J., Field theoretical approach to critical phenomena, (Domb, C.; Green, M. S., Phase Transitions and Critical Phenomena, Vol. VI (1976), Academic Press: Academic Press New York), 125
[65] Morris, T. R., Three dimensional massive scalar field theory and the derivative expansion of the renormalization group, Nucl. Phys. B, 495, 477 (1997)
[66] Morris, T. R.; Turner, M. D., Derivative expansion of the renormalization group in O(N) scalar field theory, Nucl. Phys. B, 509, 637 (1998)
[67] Morris, T. R., New developments in the continuous renormalization group, (Damgaard, P. H.; Jurkiewicz, J., New Developments in Quantum Field Theory (1998), Plenum Press: Plenum Press New York, London), 147 · Zbl 0925.81108
[68] Morris, T. R., Properties of derivative expansion approximations to the renormalization group, Int. J. Mod. Phys. B, 12, 1343 (1998) · Zbl 1229.81201
[69] Morris, T. R., Comment on fixed-point structure of scalar fields, Phys. Rev. Lett., 77, 1658 (1996)
[70] Gross, D. J.; Neveu, A., Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10, 3235 (1974)
[72] Beneke, M., Renormalons, Phys. Rep., 317, 1 (1999)
[73] Bagnuls, C.; Bervillier, C., Field-theoretic techniques in the study of critical phenomena, J. Phys. Stud., 1, 366 (1997) · Zbl 1079.82509
[75] Polchinski, J., Effective field theory and the Fermi surface, (Harvey, J.; Polchinski, J., Proceedings of the 1992 Theoretical Advanced Studies Institute in Elementary Particle Physics (1993), World Scientific: World Scientific Singapore), 235
[77] Wilson, K. G., Renormalization group and critical phenomena. II. Phase space cell analysis of critical behavior, Phys. Rev. B, 4, 3184 (1971) · Zbl 1236.82016
[81] Tokar, V. I., A new renormalization scheme in the Landau-Ginzburg-Wilson model, Phys. Lett. A, 104, 135 (1984)
[82] Nicoll, J. F.; Chang, T. S.; Stanley, H. E., A differential generator for the free energy and the magnetization equation of state, Phys. Lett. A, 57, 7 (1976)
[83] Tetradis, N.; Wetterich, C., Critical exponents from the effective average action, Nucl. Phys. B, 422, 541 (1994)
[84] Zumbach, G., Almost second order phase transitions, Phys. Rev. Lett., 71, 2421 (1993)
[85] Zumbach, G., The renormalization group in the local potential approximation and its applications to the \(O(n)\) model, Nucl. Phys. B, 413, 754 (1994)
[86] Zumbach, G., The local potential approximation of the renormalization group and its applications, Phys. Lett. A, 190, 225 (1994)
[90] Halpern, K., Cross section and effective potential in asymptotically free scalar field theories, Phys. Rev. D, 57, 6337 (1998)
[91] Halpern, K.; Huang, K., Reply to Comment on fixed-point structure of scalar fields, Phys. Rev. Lett., 77, 1659 (1996)
[92] Sailer, K.; Greiner, W., Non-trivial fixed points of the scalar field theory, Acta Phys. Hung.: Heavy Ion Phys., 5, 41 (1997)
[93] Filippov, A. E.; Breus, S. A., On the physical branch of the exact (local) RG equation, Phys. Lett., A 158, 300 (1991)
[94] Breus, S. A.; Filippov, A. E., Study of a local RG approximation, Physica, A 192, 486 (1993)
[95] Morris, T. R., On truncations of the exact renormalization group, Phys. Lett., B 334, 355 (1994)
[96] Bagnuls, C.; Bervillier, C., Field theoretical approach to critical phenomena, Phys. Rev., B 41, 402 (1990) · Zbl 0979.81067
[100] Guida, R.; Zinn-Justin, J., Critical Exponents of the N-vector model, J. Phys., A 31, 8103 (1998) · Zbl 0978.82037
[101] Bagnuls, C.; Bervillier, C., Renormalization group domains of the scalar Hamiltonian, Condens. Matter Phys., 3, 559 (2000)
[103] Aoki, K. I.; Morikawa, K.; Souma, W.; Sumi, J.-I.; Terao, H., The effectiveness of the local potential approximation in the Wegner-Houghton renormalization group, Prog. Theor. Phys., 95, 409 (1996)
[104] Morris, T. R., The renormalization group and two dimensional multicritical effective scalar field theory, Phys. Lett., B 345, 139 (1995)
[105] Liao, S.-B.; Polonyi, J.; Strickland, M., Optimization of renormalization group flow, Nucl. Phys., B 567, 493 (2000) · Zbl 0951.81022
[106] Margaritis, A.; Ódor, G.; Patkós, A., Series expansion solution of the Wegner-Houghton renormalisation group equation, Z. Phys. C, 39, 109 (1988)
[107] Haagensen, P. E.; Kubyshin, Y.; Latorre, J. I.; Moreno, E., Gradient flows from an approximation to the exact renormalization group, Phys. Lett., B 323, 330 (1994)
[108] Alford, M., Critical exponents without the epsilon expansion, Phys. Lett., B 336, 237 (1994)
[109] Hughes, J.; Liu, J., \(β\)-functions and the exact renormalization group, Nucl. Phys., B 307, 183 (1988)
[111] Brilliantov, N. V.; Bagnuls, C.; Bervillier, C., Peculiarity of the Coulombic criticality?, Phys. Lett., A 245, 274 (1998)
[112] Zumbach, G., Phase transitions with \(O(n)\) symmetry broken down to \(O(n\)−\(p)\), Nucl. Phys., B 413, 771 (1994)
[113] Tetradis, N., Renormalization-group study of weakly first-order phase transitions, Phys. Lett., B 431, 380 (1998)
[114] Tetradis, N.; Litim, D. F., Analytical solutions of exact renormalization group equations, Nucl. Phys., B 464 (FS), 492 (1996) · Zbl 1004.82505
[115] Filippov, A. E., Attractor properties of physical branches of the solution to the renormalization-group equation, Theor. Math. Phys., 117, 1423 (1998) · Zbl 0941.82027
[117] Bagnuls, C.; Bervillier, C., Nonperturbative nature of the renormalization group, Phys. Rev. Lett., 60, 1464 (1988)
[119] D’Attanasio, M.; Morris, T. R., Large \(N\) and the renormalization group, Phys. Lett., B 409, 363 (1997)
[120] Wallace, D. J.; Zia, R. K.P., Gradient flow and the renormalization group, Phys. Lett., A 48, 325 (1974)
[121] Wallace, D. J.; Zia, R. K.P., Gradient properties of the renormalization group equations in multicomponent systems, Ann. Phys. (N.Y.), 92, 142 (1975)
[122] Generowicz, J.; Harvey-Fros, C.; Morris, T. R., C function representation of the local potential approximation, Phys. Lett., B 407, 27 (1997)
[123] Zamolodchikov, A. B., ‘Irreversibility’ of the flux of the renormalization group in \(2D\) field theory, JETP Lett., 43, 730 (1986)
[124] Myers, R. C.; Periwal, V., Flow of low energy couplings in the Wilson renormalization group, Phys. Rev. D, 57, 2448 (1998)
[125] Dashen, R.; Neuberger, H., How to get an upper bound on the Higgs mass, Phys. Rev. Lett., 50, 1897 (1983)
[126] Glashow, S. L., Partial-symmetries of weak interactions, Nucl. Phys., 22, 579 (1961)
[128] Hasenfratz, A., The standard model from action to answers, (De Grand, T.; Toussaint, D., From Actions to Answers. From Actions to Answers, Proceedings of the 1989 TASI Summer School Colorado (1990), World Scientific: World Scientific Singapore), 133
[130] Wilson, K. G., Renormalization group and strong interactions, Phys. Rev. D, 3, 1818 (1971)
[131] Susskind, L., Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D, 20, 2619 (1979)
[132] ’t Hooft, G., Naturalness, Chiral symmetry, and spontaneous chiral symmetry breaking, (Hooft, ’t; Jaffe, Itzykson; Mitter, Lehman; Stora, Singer, Recent Development in Gauge Field Theories (1980), Plenum Press: Plenum Press New York), 135
[133] Weinberg, S., The problem of mass, Trans. N.Y. Acad. Sci. Ser. II, 38, 185 (1977)
[137] Kubyshin, Y.; Neves, R.; Potting, R., Polchinski ERG equation and 2D scalar field theory, (Krasnitz, A.; Potting, R.; Sá, P.; Kubyshin, Y. A., The Exact Renormalization Group (1999), World Scientific: World Scientific Singapore), 159
[138] Wetterich, C., The average action for scalar fields near phase transitions, Z. Phys. C, 57, 451 (1993)
[142] Oleszczuk, M., A symmetry preserving cutoff regularization, Z. Phys. C, 64, 533 (1994)
[147] Bonanno, A.; Zappalà, D., Two loop results from the derivative expansion of the blocked action, Phys. Rev. D, 57, 7383 (1998)
[148] Berges, J.; Tetradis, N.; Wetterich, C., Critical equation of state from the average action, Phys. Rev. Lett., 77, 873 (1996)
[149] Gräter, M.; Wetterich, C., Kosterlitz-Thouless phase transition in the two dimensional linear \(σ\) model, Phys. Rev. Lett., 75, 378 (1995)
[152] Morris, T. R.; Tighe, J. F., Convergence of derivative expansions of the renormalization group, J. High Energy Phys., 08, 007 (1999)
[156] Aoki, K.-I., Introduction to the non-perturbative renormalization group and its recent applications, Int. J. Mod. Phys., B 14, 1249 (2000) · Zbl 1219.81199
[160] Hazareesing, A.; Bouchaud, J.-P., Functional renormalization description of the roughening transition, Eur. Phys. J., B 14, 713 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.