×

Analytic aspects of Sobolev orthogonal polynomials revisited. (English) Zbl 0971.33004

The author refreshes his survey paper published in J. Comput. Appl. Math. 99, 491-510 (1998; Zbl 0933.42013) and includes some topics where progress has been made in the two intervening years. The original paper also treats the analytic theory of polynomials orthogonal with respect to inner products involving derivatives. Asymptotic properties, zero location, approximation and moment theory are some of the topic considered. The references contains 36 items.

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33-02 Research exposition (monographs, survey articles) pertaining to special functions

Citations:

Zbl 0933.42013
Full Text: DOI

References:

[1] Alfaro, M.; Martı́nez-Finkelshtein, A.; Rezola, M. L., Asymptotic properties of balanced extremal Sobolev polynomials: coherent case, J. Approx. Theory, 100, 44-59 (1999) · Zbl 0942.42015
[2] M. Álvarez de Morales, J.J. Moreno-Balcázar, T.E. Pérez, M.A. Piñar, Non-diagonal Hermite-Sobolev orthogonal polynomials, Acta Appl. Math., in press.; M. Álvarez de Morales, J.J. Moreno-Balcázar, T.E. Pérez, M.A. Piñar, Non-diagonal Hermite-Sobolev orthogonal polynomials, Acta Appl. Math., in press. · Zbl 0983.42018
[3] Aptekarev, A.; Berriochoa, E.; Cachafeiro, A., Strong asymptotics for the continuous Sobolev orthogonal polynomials on the unit circle, J. Approx. Theory, 100, 381-391 (1999) · Zbl 0934.42017
[4] A.I. Aptekarev, G. López, F. Marcellán, Orthogonal polynomials with respect to a differential operator, Existence and uniqueness, 1999, unpublished.; A.I. Aptekarev, G. López, F. Marcellán, Orthogonal polynomials with respect to a differential operator, Existence and uniqueness, 1999, unpublished.
[5] I. Area, E. Godoy, F. Marcellán, Inner product involving differences: The Meixner-Sobolev polynomials, J. Differential Equations Appl. (1999), in press.; I. Area, E. Godoy, F. Marcellán, Inner product involving differences: The Meixner-Sobolev polynomials, J. Differential Equations Appl. (1999), in press.
[6] Area, I.; Godoy, E.; Marcellán, F.; Moreno-Balcázar, J. J., Inner products involving \(q\)-differences: The little \(q\)-Laguerre-Sobolev polynomials, J. Comput. Appl. Math., 118, 1-22 (2000) · Zbl 0957.33008
[7] Area, I.; Godoy, E.; Marcellán, F.; Moreno-Balcázar, J. J., Ratio and Plancherel-Rotach asymptotics for Meixner-Sobolev orthogonal polynomials, J. Comput. Appl. Math., 116, 63-75 (2000) · Zbl 0984.42016
[8] Barrios, D.; López Lagomasino, G.; Pijeira, H., The moment problem for a Sobolev inner product, J. Approx. Theory, 100, 364-380 (1999) · Zbl 0980.44008
[9] Bavinck, H., On polynomials orthogonal with respect to an inner product involving differences, J. Comput. Appl. Math., 57, 17-27 (1995) · Zbl 0823.42014
[10] Evans, W. D.; Littlejohn, L. L.; Marcellán, F.; Markett, C.; Ronveaux, A., On recurrence relations for Sobolev orthogonal polynomials, SIAM J. Math. Anal., 26, 2, 446-467 (1995) · Zbl 0824.33006
[11] Everitt, W. N.; Littlejohn, L. L., The density of polynomials in a weighted Sobolev space, Rendiconti di Matematica (Roma) Serie VII, 10, 835-852 (1990) · Zbl 0765.41008
[12] Everitt, W. N.; Littlejohn, L. L.; Williams, S. C., Orthogonal polynomials in weighted Sobolev spaces, (Vinuesa, J., Orthogonal Polynomials and Their Applications. Orthogonal Polynomials and Their Applications, Lecture Notes in Pure and Applied Math., Vol. 117 (1989), Marcel Dekker: Marcel Dekker New York), 53-72 · Zbl 0676.33005
[13] Everitt, W. N.; Littlejohn, L. L.; Williams, S. C., Orthogonal polynomials and approximation in Sobolev spaces, J. Comput. Appl. Math., 48, 1-2, 69-90 (1993) · Zbl 0796.42020
[14] Gautschi, W.; Kuijlaars, A. B.J., Zeros and critical points of Sobolev orthogonal polynomials, J. Approx. Theory, 91, 1, 117-137 (1997) · Zbl 0897.42014
[15] O. Kováčik, Sobolev spaces defined by differences, Proceedings of Seminar on Orthogonal Polynomials and their Applications (SOPOA), Department of Mathematics, Faculty of Civil Engineering, University of Transport and Communications, Žilina, Slovakia, 1993, pp. 19-24.; O. Kováčik, Sobolev spaces defined by differences, Proceedings of Seminar on Orthogonal Polynomials and their Applications (SOPOA), Department of Mathematics, Faculty of Civil Engineering, University of Transport and Communications, Žilina, Slovakia, 1993, pp. 19-24. · Zbl 0798.46023
[16] López, G.; Marcellán, F.; Van Assche, W., Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product, Constr. Approx., 11, 107-137 (1995) · Zbl 0840.42017
[17] López, G.; Pijeira-Cabrera, H., Zero location and \(n\) th root asymptotics of Sobolev orthogonal polynomials, J. Approx. Theory, 99, 1, 30-43 (1999) · Zbl 0949.42020
[18] López Lagomasino, G.; Pijeira-Cabrera, H.; Pérez Izquierdo, I., Sobolev orthogonal polynomials in the complex plane, this issue, J. Comput. Appl. Math., 127, 219-230 (2001) · Zbl 0973.42015
[19] F. Marcellán, A. Martı́nez-Finkelshtein, J.J. Moreno-Balcázar, \(k\)-coherence of measures with non-classical weights, manuscript 1999.; F. Marcellán, A. Martı́nez-Finkelshtein, J.J. Moreno-Balcázar, \(k\)-coherence of measures with non-classical weights, manuscript 1999.
[20] Marcellán, F.; Meijer, H. G.; Pérez, T. E.; Piñar, M. A., An asymptotic result for Laguerre-Sobolev orthogonal polynomials, J. Comput. Appl. Math., 87, 87-94 (1997) · Zbl 0886.33008
[21] F. Marcellán, J.J. Moreno-Balcázar, Strong and Plancherel-Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials, J. Approx. Theory, in press.; F. Marcellán, J.J. Moreno-Balcázar, Strong and Plancherel-Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials, J. Approx. Theory, in press. · Zbl 0983.42013
[22] Martı́nez-Finkelshtein, A., Asymptotic properties of Sobolev orthogonal polynomials, J. Comput. Appl. Math., 99, 1-2, 491-510 (1998) · Zbl 0933.42013
[23] A. Martı́nez-Finkelshtein, Bernstein-Szegő’s theorem for Sobolev orthogonal polynomials, Constr. Approx. 16 (2000) 73-84.; A. Martı́nez-Finkelshtein, Bernstein-Szegő’s theorem for Sobolev orthogonal polynomials, Constr. Approx. 16 (2000) 73-84. · Zbl 0951.42014
[24] Martı́nez-Finkelshtein, A.; Moreno-Balcázar, J. J.; Pérez, T. E.; Piñar, M. A., Asymptotics of Sobolev orthogonal polynomials for coherent pairs, J. Approx. Theory, 92, 280-293 (1998) · Zbl 0898.42006
[25] Martı́nez-Finkelshtein, A.; Pijeira-Cabrera, H., Strong asymptotics for Sobolev orthogonal polynomials, J. Anal. Math., 78, 143-156 (1999) · Zbl 0937.42011
[26] Meijer, H. G., A short history of orthogonal polynomials in a Sobolev space I. The non-discrete case, Nieuw Arch. Wisk., 14, 93-113 (1996) · Zbl 0862.33001
[27] Meijer, H. G., Determination of all coherent pairs, J. Approx. Theory, 89, 321-343 (1997) · Zbl 0880.42012
[28] H.G. Meijer, T.E. Pérez, M. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type, Report 97-45, T.U. Delft, 1997.; H.G. Meijer, T.E. Pérez, M. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type, Report 97-45, T.U. Delft, 1997.
[29] P. Nevai, Orthogonal Polynomials, Memoirs American Mathematical Society, Vol. 213, American Mathematical Society, Providence, RI, 1979.; P. Nevai, Orthogonal Polynomials, Memoirs American Mathematical Society, Vol. 213, American Mathematical Society, Providence, RI, 1979. · Zbl 0405.33009
[30] H.E. Pijeira Cabrera, Teorı́a de Momentos y Propiedades Asintóticas para Polinomios Ortogonales de Sobolev, Doctoral Dissertation, Universidad Carlos III de Madrid, October 1998.; H.E. Pijeira Cabrera, Teorı́a de Momentos y Propiedades Asintóticas para Polinomios Ortogonales de Sobolev, Doctoral Dissertation, Universidad Carlos III de Madrid, October 1998.
[31] J.M. Rodrı́guez, Multiplication operator in Sobolev spaces with respect to measures, 1998, submitted for publication.; J.M. Rodrı́guez, Multiplication operator in Sobolev spaces with respect to measures, 1998, submitted for publication.
[32] J.M. Rodrı́guez, Approximation by polynomials and smooth functions in Sobolev spaces with respect to measures, 1999, submitted for publication.; J.M. Rodrı́guez, Approximation by polynomials and smooth functions in Sobolev spaces with respect to measures, 1999, submitted for publication.
[33] J.M. Rodrı́guez, Weierstrass’ theorem in weighted Sobolev spaces, J. Approx. Theory, in press.; J.M. Rodrı́guez, Weierstrass’ theorem in weighted Sobolev spaces, J. Approx. Theory, in press.
[34] J.M. Rodrı́guez, V. Álvarez, E. Romera, D. Pestana, Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials, 1998, submitted for publication.; J.M. Rodrı́guez, V. Álvarez, E. Romera, D. Pestana, Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials, 1998, submitted for publication.
[35] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften, Vol. 316, Springer, Berlin, 1997.; E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften, Vol. 316, Springer, Berlin, 1997. · Zbl 0881.31001
[36] H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, Vol. 43, Cambridge University Press, Cambridge, 1992.; H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, Vol. 43, Cambridge University Press, Cambridge, 1992. · Zbl 0791.33009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.