×

Quasi 4–8 subdivision. (English) Zbl 0971.68176

Summary: This paper presents a new scheme for subdivision surfaces based on four-directional meshes. It combines geometry-sensitive refinement with convolution smoothing. The scheme has a simple, efficient implementation and generates smooth well-shaped meshes.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ball, A. A.; Storry, D. J.T., Conditions for tangent plane continuity over recursively generated B-spline surfaces, ACM Transactions on Graphics, 7, 2, 83-102 (1988) · Zbl 0663.65012
[2] Biermann, H.; Levin, A.; Zorin, D., Piecewise smooth subdivision surfaces with normal control, (Proceedings of SIGGRAPH 2000 (2000)), 113-120
[3] Boehm, W., Surfaces in computer aided geometric design, (The de Boor Algorithm for Triangular Splines (1982), North-Holland: North-Holland Amsterdam), 109-120
[4] Catmull, E.; Clark, J., Recursively generated B-spline surfaces on arbitrary topological meshes, Computer-Aided Design, 10, 350-365 (1978)
[5] Cohen, E.; Lyche, T.; Riesenfeld, R., Discrete box splines and refinement algorithms, Computer Aided Geometric Design, 1, 2, 131-148 (1984) · Zbl 0567.65004
[6] Dahmen, W.; Micchelli, C. A., Subdivision algorithms for the generation of box-spline surfaces, Computer Aided Geometric Design, 1, 115-129 (1984) · Zbl 0581.65011
[7] de Boor, C., A Practical Guide to Splines (1978), Springer: Springer Berlin · Zbl 0406.41003
[8] DeRose, T.; Kass, M.; Truong, T., Subdivision surfaces in character animation, (SIGGRAPH 98 Conference Proceedings (1998)), 85-94
[9] Doo, D.; Sabin, M., Behaviour of recursive division surfaces near extraordinary points, Computer Aided Design, 10, 356-360 (1978)
[10] Doo, D.; Sabin, M., Behaviour of recursive division surfaces near extraordinary points, Computer-Aided Design, 10, 356-360 (1978)
[11] Dyn, N.; Levin, D.; Gregory, J. A., A butterfly subdivision scheme for surface interpolation with tension control, ACM Transactions on Graphics, 9, 2, 160-169 (1990) · Zbl 0726.68076
[12] Dyn, N.; Levin, D.; Gregory, J. A., A butterfly subdivision scheme for surface interpolation with tension control, ACM Transactions on Graphics, 9, 2, 160-169 (1990) · Zbl 0726.68076
[13] Grünbaum, B.; Shephard, G., Tilings and Patterns (1987), W.H. Freeman · Zbl 0601.05001
[14] Habbib, A.; Warren, J., Edge vertex insertion for a class of
((C^1\) subdivision surfaces, Preprint (1997)
[15] Halstead, M.; Kass, M.; DeRose, T., Efficient, fair interpolation using Catmull-Clark surfaces, (Computer Graphics (SIGGRAPH 93 Proceedings), Vol. 27 (1993)), 35-44
[16] Hoppe, H.; DeRose, T.; Duchamp, T.; Halstead, M.; Jin, H.; McDonald, J.; Schweitzer, J.; Stuetzle, W., Piecewise smooth surface reconstruction, (Proceedings of SIGGRAPH 94 (1994)), 295-302
[17] Kobbelt, L., Interpolatory subdivision on open quadrilateral nets with arbitrary topology, Computer Graphics Forum, 15, 3, 409-420 (1996)
[18] Kobbelt, L., A variational approach to subdivision, Computer Aided Geometric Design, 13, 8, 743-761 (1996) · Zbl 0875.68878
[19] Lane, J.; Riesenfeld, R., A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Trans. Pattern Analysis Machine Intell., 2, 1, 35-46 (1980) · Zbl 0436.68063
[20] Levin, A., Interpolating nets of curves by smooth subdivision surfaces, (Proceedings of SIGGRAPH 99, Computer Graphics Proceedings. Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series (1999)), 57-64
[21] Loop, C., Smooth subdivision for surfaces based on triangles. Master’s Thesis (1987), University of Utah
[22] Nasri, A. H., Polyhedral subdivision methods for free-form surfaces, ACM Transactions on Graphics, 6, 1, 29-73 (1987) · Zbl 0637.65144
[23] Nasri, A. H., Recursive subdivision of polygonal complexes and its applications in computer-aided geometric design, Computer Aided Geometric Design, 17, 7, 595-619 (2000) · Zbl 0997.65029
[24] Peters, J.; Reif, U., The simplest subdivision scheme for smoothing polyhedra, ACM Transactions on Graphics, 16, 4, 420-431 (1997)
[25] Prautzsch, H., Generalized subdivision and convergence, Computer Aided Geometric Design, 2, 1-3, 69-76 (1985) · Zbl 0599.65004
[26] Prautzsch, H.; Umlauf, G., Improved triangular subdivision schemes, Computer Graphics International, Hannover, Germany (1998) · Zbl 0932.68109
[27] Reif, U., A unified approach to subdivision algorithms near extraordinary vertices, Computer Aided Geometric Design, 12, 2, 153-174 (1995) · Zbl 0872.65007
[28] Rivara, M. C., Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal., 21, 3, 604-613 (1984) · Zbl 0574.65133
[29] Schweitzer, J., Analysis and application of subdivision surfaces, Ph.D. Thesis (1996), University of Washington
[30] Warren, J., Subdivision schemes for variational splines, Preprint (1997)
[31] Zorin, D., Stationary subdivision and multiresolution surface representations, Ph.D. Thesis (1997), Caltech
[32] Zorin, D.; Schroeder, P.; Sweldens, W., Interpolating subdivision for meshes with arbitrary topology, (SIGGRAPH 96 Conference Proceedings (1996)), 189-192
[33] Zwart, P. B., Multivariate splines with nondegenerate partitions, SIAM J. Numer. Anal., 10, 4, 665-673 (1973) · Zbl 0261.65011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.