×

Smooth wavelet tight frames with zero moments. (English) Zbl 0972.42025

Summary: This paper considers the design of wavelet tight frames based on iterated oversampled filter banks. The greater design freedom available makes possible the construction of wavelets with a high degree of smoothness, in comparison with orthonormal wavelet bases. In particular, this paper takes up the design of systems that are analogous to Daubechies orthonormal wavelets – that is, the design of minimal length wavelet filters satisfying certain polynomial properties, but now in the oversampled case. Gröbner bases are used to obtain the solutions to the nonlinear design equations. Following the dual-tree DWT of Kingsbury, one goal is to achieve near shift invariance while keeping the redundancy factor bounded by 2, instead of allowing it to grow as it does for the undecimated DWT (which is exactly shift invariant). Like the dual tree, the overcomplete DWT described in this paper is less shift-sensitive than an orthonormal wavelet basis. Like the examples of Chui and He, and Ron and Shen, the wavelets are much smoother than what is possible in the orthonormal case.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Software:

DT-CWT; SINGULAR

References:

[1] Benedetto, J. J.; Li, S., The theory of multiresolution an analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5, 389-427 (1998) · Zbl 0915.42029
[2] Benno, S. A.; Moura, J. M.F, Scaling functions robust to translations, IEEE Trans. Signal Process., 46, 3269-3281 (1998) · Zbl 0984.94005
[3] K. Berkner, and, R. O. Wells, Jr, A correlation-dependent model for denoising via nonorthogonal wavelet transforms, Technical Report CML TR98-07, Computational Mathematics Laboratory, Rice University, 1998.; K. Berkner, and, R. O. Wells, Jr, A correlation-dependent model for denoising via nonorthogonal wavelet transforms, Technical Report CML TR98-07, Computational Mathematics Laboratory, Rice University, 1998.
[4] Bölcskei, H.; Hlawatsch, F.; Feichtinger, H. G., Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Process., 46, 3256-3268 (1998)
[5] Burrus, C. S.; Gopinath, R. A.; Guo, H., Introduction to Wavelets and Wavelet Transforms (1997), Prentice Hall: Prentice Hall Englewood Cliffs
[6] Burt, P. J.; Adelson, E. H., The Laplacian pyramid as a compact image code, IEEE Trans. Comm., 31, 532-540 (1983)
[7] Chui, C.; He, W., Compactly supported tight frames associated with refinable functions, Appl. Comput. Harmon. Anal., 8, 293-319 (2000) · Zbl 0948.42022
[8] Chui, C. K.; Shi, X.; Stöckler, J., Affine frames, quasi-affine frames, and their duals, Adv. Comp. Math., 8, 1-17 (1998) · Zbl 0892.42019
[9] Coifman, R. R.; Donoho, D. L., Translation-invariant de-noising, (Antoniadis, A., Wavelets and Statistics. Wavelets and Statistics, Springer-Verlag Lecture Notes (1995), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0866.94008
[10] Cox, D.; Little, J.; OrShea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (1991), Springer-Verlag: Springer-Verlag Berlin
[11] Cvetkovic̀, Z.; Vetterli, M., Oversampled filter banks, IEEE Trans. Signal Process., 46, 1245-1255 (1998)
[12] Daubechies, I., Ten Lectures on Wavelets (1992), SIAM: SIAM Philadelphia · Zbl 0776.42018
[13] Faugère, J.-C; de Saint-Martin, F. M.; Rouillier, F., Design of regular nonseparable bidimensional wavelets using Gröbner basis techniques, IEEE Trans. Signal Process., 46, 845-856 (1998)
[14] Freeman, W. T.; Adelson, E. H., The design and use of steerable filters, IEEE Trans. Pattern Anal. Mach. Intell., 13, 891-906 (1991)
[15] Goyal, V. K.; Vetterli, M.; Thao, N. T., Quantized overcomplete expansions in \(R^N\): Analysis, synthesis and algorithms, IEEE Trans. Inform. Theory, 44, 16-31 (1998) · Zbl 0905.94007
[16] G.-M. Greuel, G. Pfister, and, H. Schönemann, Singular reference manual, in, Reports on Computer Algebra, number, 12, Centre for Computer Algebra, University of Kaiserslautern, May 1997. Available at, http://www.singular.uni-kl.de/; G.-M. Greuel, G. Pfister, and, H. Schönemann, Singular reference manual, in, Reports on Computer Algebra, number, 12, Centre for Computer Algebra, University of Kaiserslautern, May 1997. Available at, http://www.singular.uni-kl.de/
[17] Hermann, O., On the approximation problem in nonrecursive digital filter design, IEEE Trans. Circuit Theory, 18, 411-413 (1971)
[18] Holschneider, M.; Kronland-Martinet, R.; Morlet, J.; Tchamitchian, Ph, A real-time algorithm for signal analysis with the help of the wavelet transform, (Combes, J. M.; Grassman, A.; Tchamitchian, Ph, Wavelets, Time-Frequency Methods and Phase Space (1989), Springer-Verlag: Springer-Verlag Berlin), 286-297 · Zbl 0850.94021
[19] N. G. Kingsbury, The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters, in, Proceedings of the Eighth IEEE DSP Workshop, Utah, August 9-12, 1998.; N. G. Kingsbury, The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters, in, Proceedings of the Eighth IEEE DSP Workshop, Utah, August 9-12, 1998.
[20] Kingsbury, N. G., Image processing with complex wavelets, Phil. Trans. R. Soc. London A (1999) · Zbl 0976.68527
[21] N. G. Kingsbury, Shift invariant properties of the dual-tree complex wavelet transform, in, Proc IEEE Int. Conf. Acoust, Speech, Signal Processing (ICASSP), Phoenix, March 16-19, 1999.; N. G. Kingsbury, Shift invariant properties of the dual-tree complex wavelet transform, in, Proc IEEE Int. Conf. Acoust, Speech, Signal Processing (ICASSP), Phoenix, March 16-19, 1999.
[22] Kliewer, J.; Mertins, A., Oversampled cosine-modulated filter banks with arbitrary system delay, IEEE Trans. Signal Process., 46, 941-955 (1998)
[23] Lang, M.; Guo, H.; Odegard, J. E.; Burrus, C. S.; Wells, R. O., Noise reduction using an undecimated discrete wavelet transform, IEEE Signal Process. Lett., 3, 10-12 (1996)
[24] J. Lebrun, and, M. Vetterli, High order balanced multiwavelets: Theory, factorization and design, preprint, 1998.; J. Lebrun, and, M. Vetterli, High order balanced multiwavelets: Theory, factorization and design, preprint, 1998. · Zbl 1369.42031
[25] Munch, N. J., Noise reduction in tight Weyl-Heisenberg frames, IEEE Trans. Inform. Theory, 38, 608-616 (1992) · Zbl 0745.42015
[26] Nason, G. P.; Silverman, B. W., Stationary wavelet transform and some statistical applications, (Antoniadis, A., Wavelets and Statistics. Wavelets and Statistics, Springer-Verlag Lecture Notes (1995), Springer-Verlag: Springer-Verlag Berlin), 281-299 · Zbl 0828.62038
[27] Park, H.; Kalker, T.; Vetterli, M., Groebner bases and multidimensional FIR multirate systems, J. Multidimen. Syst. Signal Process., 8, 11-30 (1997) · Zbl 0869.93024
[28] Rabiner, L. R.; Rader, C. M., Digital Signal Processing (1972), IEEE Press: IEEE Press New York
[29] Rioul, O.; Duhamel, P., Fast algorithms for discrete and continuous wavelet transforms, IEEE Trans. Inform. Theory, 38, 569-586 (1992) · Zbl 0745.65086
[30] Ron, A.; Shen, Z., Affine systems in \(L_2(R^d)\): The analysis of the analysis operator, J. Funct. Anal., 148, 408-447 (1997) · Zbl 0891.42018
[31] Ron, A.; Shen, Z., Construction of compactly supported affine frames in \(L_2(R^d)\), (Lau, K. S., Advances in Wavelets (1998), Springer-Verlag: Springer-Verlag Berlin)
[32] Selesnick, I. W., Interpolating multiwavelet bases and the sampling theorem, IEEE Trans. Signal Process., 47, 1615-1621 (1999) · Zbl 0972.42024
[33] Selesnick, I. W., Balanced multiwavelet based on symmetric FIR filters, IEEE Trans. Signal Process., 48, 184-191 (2000) · Zbl 1012.94507
[34] Selesnick, I. W.; Burrus, C. S., Maximally flat low-pass FIR filters with reduced delay, IEEE Trans. Circuits Syst. II, 45, 53-68 (1998)
[35] I. W. Selesnick, and, L. Sendur, Iterated oversampled filter banks and wavelet frames, in, Wavelet Applications in Signal and Image Processing VIII, San Diego, 2000, Proceedings of SPIE, Vol, 4119.; I. W. Selesnick, and, L. Sendur, Iterated oversampled filter banks and wavelet frames, in, Wavelet Applications in Signal and Image Processing VIII, San Diego, 2000, Proceedings of SPIE, Vol, 4119.
[36] Shensa, M. J., The discrete wavelet transform: Wedding the à trous and Mallat algorithms, IEEE Trans. Signal Process., 40, 2464-2482 (1992) · Zbl 0825.94053
[37] Strang, G.; Nguyen, T., Wavelets and Filter Banks (1996), Wellesley-Cambridge Press · Zbl 1254.94002
[38] Vetterli, M.; Kovačević, J., Wavelets and Subband Coding (1995), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0885.94002
[39] Xiong, Z.; Orchard, M. T.; Zhang, Y.-Q, A deblocking algorithm for JPEG compressed images using overcomplete wavelet representations, IEEE Trans. Circuits Syst. Video Technol., 7, 433-437 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.