×

On average properties of inhomogeneous fluids in general relativity: Dust cosmologies. (English) Zbl 0976.83073

Summary: For general relativistic spacetimes filled with irrotational ‘dust’ a generalized form of Friedmann’s equations for an ‘effective’ expansion factor \(a_{\mathcal D}(t)\) of inhomogeneous cosmologies is derived. Contrary to the standard Friedmann equations, which hold for homogeneous-isotropic cosmologies, the new equations include the ‘backreaction effect’ of inhomogeneities on the average expansion of the model. A universal relation between ‘backreaction’ and average scalar curvature is also given. For cosmologies whose averaged spatial scalar curvature is proportional to \(a_{\mathcal D}^{-2}\), the expansion law governing a generic domain can be found. However, as the general equations show, ‘backreaction’ acts as to produce average curvature in the course of structure formation, even when starting with space sections that are spatially flat on average.

MSC:

83F05 Relativistic cosmology
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arnowitt, R., Deser, S., Misner, C. W. (1962). In Gravitation: an Introduction to Current Research, L. Witten, ed. (Wiley, New York).
[2] Buchert, T. (1996). In Mapping, Measuring and Modelling the Universe (València 1995), P. Coles, V. J. Martínez, M. J. Pons–Bordería, eds.(ASP Conference Series), 349–356.
[3] Buchert, T. (1997). In 2nd SFB Workshop on Astro-particle Physics, Report SFB/P002, Ringberg (Tegernsee) 1996, R. Bender, T. Buchert, P. Schneider, F. von Feilitzsch, eds.(T echnical University of Munich, Munich), p. 71-82.
[4] Buchert, T., Ehlers, J. (1
[5] Buchert, T., Kerscher, M., Sicka, C. (1999). Preprint.
[6] Carfora, M., Piotrkowska, · doi:10.1103/PhysRevD.52.4393
[7] Ellis, G. F. R.(1984). In General Relativity and Gravitation 10, B. Bertotti, F. de Felice and A. Pascolini, eds.(Reidel, Dordrecht), 215–288.
[8] Kasai, · doi:10.1103/PhysRevD.52.5605
[9] Kofman, L., Pogosyan, · doi:10.1086/175419
[10] Maartens, R., Ellis G. F. R., Stoeger W. · doi:10.1103/PhysRevD.51.5942
[11] Matarrese, S. (1996). In Proc. Int. School of Physics ”Enrico Fermi,” CXXXII – Dark Matter in the Universe (Varenna 1995), S. Bonometto, J. Primack, A. Provenzale, eds. (IOS Press, Amsterdam), 601-628.
[12] Matarrese, S., Terranova, D. (1996). M · doi:10.1093/mnras/283.2.400
[13] Peebles, P. J. E.(1980). The Large Scale Structure of the Universe (Princeton University Press, Princeton, NJ).
[14] Russ, H., Morita, M., Kasai, M., Börner · doi:10.1103/PhysRevD.53.6881
[15] Russ, H., Soffel, M. H., Kasai, M., Börner · doi:10.1103/PhysRevD.56.2044
[16] Stoeger, W. R., Helmi, A., Torres, D. F. (1999). Preprint gr-qc/9904020.
[17] Takada M., Futamase T. · Zbl 1081.85501 · doi:10.1023/A:1026638021372
[18] Wainwright, J., Ellis, G. F. R.(1997). Dynamical Systems in Cosmology (Cambridge University Press, Cambridge). · Zbl 1072.83002
[19] Wertz, J. · doi:10.1086/150834
[20] Yodzis, P. (1974).
[21] York, J. W., Jr. (1979). In Sources of Gravitational Radiation, L. Smarr, ed.(Cambridge University Press, Cambridge), p. 83.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.