Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. (English) Zbl 0983.76051

Summary: We outline a new class of robust and efficient methods for solving subproblems that arise in the linearization and operator splitting of Navier-Stokes equations. We describe a very general strategy for preconditioning that has two basic building blocks; a multigrid V-cycle the scalar convection-diffusion operator, and a multigrid V-cycle for pressure Poisson operator. We present numerical experiments illustrating that a simple implementation of our approach leads to effective and robust solver strategy, in that the convergence rate is independent of the grid, robust with respect to the time-step, and only deteriorates very slowly as the Reynolds number is increased.


76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs


Full Text: DOI


[1] Bercovier, M.; Pironneau, O.A., Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. math., 33, 211-224, (1977) · Zbl 0423.65058
[2] Bramble, J.; Pasciak, J., Iterative techniques for time dependent Stokes problems, Math. appl., 33, 13-30, (1997) · Zbl 1030.76506
[3] Cahouet, J.; Chabard, J.P., Some fast 3D finite element solvers for the generalised Stokes problem, Internat. J. numer. methods fluids, 8, 869-895, (1988) · Zbl 0665.76038
[4] Eisenstat, S.C.; Elman, H.C.; Schultz, M.H., Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. numer. anal., 20, 345-357, (1983) · Zbl 0524.65019
[5] Elman, H., Preconditioning for the steady state navier – stokes equations with low viscosity, SIAM J. sci. comput., 20, 1299-1316, (1999) · Zbl 0935.76057
[6] Elman, H.; Silvester, D., Fast nonsymmetric iterations and preconditioning for navier – stokes equations, SIAM J. sci. comput., 17, 33-46, (1996) · Zbl 0843.65080
[7] H.C. Elman, D.J Silvester, A.J. Wathen, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Technical Report UMIACS-TR-2000-54 (2000). · Zbl 1143.76531
[8] Faber, V.; Manteuffel, T.A., Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. numer. anal., 21, 352-362, (1984) · Zbl 0546.65010
[9] Faber, V.; Manteuffel, T.A., Orthogonal error methods, SIAM J. numer. anal., 24, 170-187, (1987) · Zbl 0613.65030
[10] Fischer, B.; Ramage, A.; Silvester, D.; Wathen, A., On parameter choice and iterative convergence for stabilised discretisations of advection-diffusion problems, Comput. methods appl. mech. eng., 179, 185-202, (1999) · Zbl 0977.76043
[11] Freund, R.; Nachtigal, N.M., QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. math., 60, 315-339, (1991) · Zbl 0754.65034
[12] R. Freund, N.M. Nachtigal, A new Krylov-subspace method for symmetric indefinite linear systems, in: Ames, W.F. (Ed.), Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, IMACS, 1994, pp. 1253-1256.
[13] Girault, V.; Raviart, P.A., Finite element methods for navier – stokes equations—theory and algorithms, (1986), Springer Berlin · Zbl 0396.65070
[14] Gresho, P.M.; Sani, R., Incompressible flow and the finite element method, (1998), Wiley Chichester · Zbl 0941.76002
[15] C. Johnson, The streamline diffusion finite element method for compressible and incompressible flow, in: D.F. Griffiths, G.A. Watson (Eds.), Numerical Analysis 1989, Longman Scientific, 1989, pp. 155-181.
[16] D. Kay, D. Loghin, A Green’s function preconditioner for the steady state Navier-Stokes equations, Oxford University Computing Laboratory Report 99/06, 1999, SIAM J. Sci. Comput., submitted for publication.
[17] Kay, D.; Silvester, D., A posteriori error estimation for stabilised mixed approximations of the Stokes equations, SIAM J. sci. comput., 21, 1321-1336, (2000) · Zbl 0956.65100
[18] Lebedev, V.I., Iterative methods for solving operator equations with a spectrum contained in several intervals, USSR comput. math. and math. phys., 9, 17-24, (1969) · Zbl 0232.65046
[19] Murphy, M.F.; Golub, G.H.; Wathen, A.J., A note on preconditioning for indefinite linear systems, SIAM J. sci. comput., 21, 1969-1972, (2000) · Zbl 0959.65063
[20] Paige, C.C.; Saunders, M.A., Solution of sparse indefinite systems of linear equations, SIAM. J. numer. anal., 12, 617-629, (1975) · Zbl 0319.65025
[21] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
[22] Silvester, D.; Wathen, A., Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners, SIAM J. numer. anal., 31, 1352-1367, (1994) · Zbl 0810.76044
[23] D. Silvester, A. Wathen, Fast & robust solvers for time-discretised incompressible Navier-Stokes equations, in: D.F. Griffiths, G.A. Watson (Eds.), Numerical Analysis 1995, Longman Scientific, 1996, pp. 230-240. · Zbl 0851.76042
[24] Simo, J.; Armero, F., Unconditional stability and long-term behavior of transient algorithms for the incompressible navier – stokes and Euler equations, Comput. methods appl. mech. eng., 111, 111-154, (1994) · Zbl 0846.76075
[25] Sleijpen, G.L.G.; Fokkema, D.R., Bicgstab(ℓ) for linear equations involving unsymmetric matrices with complex spectrum, Electron. trans. numer. anal., 1, 11-32, (1993) · Zbl 0820.65016
[26] Smith, A.; Silvester, D., Implicit algorithms and their linearisation for the transient navier – stokes equations, IMA J. numer. anal., 17, 527-543, (1997)
[27] Sonneveld, P., CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. sci. statist. comput., 10, 36-52, (1989) · Zbl 0666.65029
[28] Stoyan, G., Towards discrete velte decompositions and narrow bounds for inf-sup constants, Comput. math. appl., 38, 243-261, (1999) · Zbl 0954.65080
[29] Turek, S., Efficient solvers for incompressible flow problems, (1999), Springer Berlin
[30] Van der Vorst, H.A., BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. sci. statist. comput., 10, 631-644, (1992) · Zbl 0761.65023
[31] Wathen, A.J., Realistic eigenvalue bounds for the Galerkin mass matrix, IMA J. numer. anal., 7, 449-457, (1987) · Zbl 0648.65076
[32] Wathen, A.; Fischer, B.; Silvester, D., The convergence rate of the minimal residual method for the Stokes problem, Numer. math., 71, 121-134, (1995) · Zbl 0837.65026
[33] A. Wathen, B. Fischer, D. Silvester, The convergence of iterative solution methods for symmetric and indefinite linear systems, in: D.F. Griffiths, D.J. Higham, G.A. Watson (Eds.), Numerical Analysis 1997, Longman Scientific, 1997, pp. 230-243. · Zbl 0902.65012
[34] Wesseling, P., An introduction to multigrid, (1991), Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.