×

Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation. (English) Zbl 0984.37092

Summary: We make use of an extended tanh-function method and symbolic computation to obtain respectively four kinds of soliton solutions for a new generalized Hirota-Satsuma coupled KdV equation and a new coupled MKdV equation, which were introduced recently by Y. Wu, X. Geng, X. Hu and S. Zhu [Phys. Lett., A 255, 259-264 (1999; Zbl 0935.37029)].

MSC:

37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35Q53 KdV equations (Korteweg-de Vries equations)
35C05 Solutions to PDEs in closed form

Citations:

Zbl 0935.37029
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wu, Y. T.; Geng, X. G.; Hu, X. B.; Zhu, S. M., Phys. Lett. A, 255, 259 (1999) · Zbl 0935.37029
[2] Hirota, R.; Satsuma, J., Phys. Lett. A, 85, 407 (1981)
[3] Satsuma, J.; Hirota, R., J. Phys. Soc. Jpn., 51, 332 (1982)
[4] Fan, E. G.; Zhang, H. Q., Phys. Lett. A, 246, 403 (1998) · Zbl 1125.35308
[5] Malfliet, W., Am. J. Phys., 60, 650 (1992) · Zbl 1219.35246
[6] Parkes, E. J.; Duffy, B. R., Comput. Phys. Commun., 98, 288 (1996) · Zbl 0948.76595
[7] Parkes, E. J.; Duffy, B. R., Phys. Lett. A, 229, 217 (1997) · Zbl 1043.35521
[8] Smyth, N. F., J. Austral. Math. Soc. Ser. B, 33, 403 (1992) · Zbl 0758.35042
[9] Clarkson, P. A.; Mansfield, E. L., Physica D, 70, 250 (1993)
[10] Kudryashov, N. A.; Zargayan, D., J. Phys. A, 29, 8067 (1996) · Zbl 0901.35090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.