Andrews, George E. Umbral calculus, Bailey chains, and pentagonal number theorems. (English) Zbl 0985.11048 J. Comb. Theory, Ser. A 91, No. 1-2, 464-475 (2000). Euler’s pentagonal number theorem may be written as \[ 1= {\sum^\infty_{n= -\infty} (-1)^nq^{n(3n-1)/2} \over\prod^\infty_{n=1} (1-q^n)}. \] In the paper under review, the author obtains the new pentagonal number theorems: \[ \sum^\infty_{n=1} {q^{2n^2} \over(q;q)_{2n}} ={\sum^\infty_{m,n=-\infty} (-1)^{n+m}q^{n(3n-1)/2 +m(3m-1)/2 +nm}\over \prod^\infty_{n=1} (1-q^n)^2} \] and \[ \begin{split} \sum_{i,j,k\geq 0}{q^{i^2+j^2 +k^2}\over (q;q)_{i+j-u} (q;q)_{i+k-j} (q;q)_{j+k-i}}=\\ ={\sum^\infty_{n,m,p= -\infty}(-1)^{n+m+p} q^{n( 3n-1)/2 +m(3m-1)/2+p(3p-1)/2 +nm+np + mp}\over \prod^\infty_{n=1}(1-q^n)^3}. \end{split} \] The author traces the origin of his ideas back through umbral calculus, Rogers’ second proof of the Rogers-Ramanujan identities and Liouville’s eighteen papers. The paper concludes with some ideas for possible future applications of the methods. Reviewer: Shaun Cooper (Auckland) Cited in 3 ReviewsCited in 13 Documents MSC: 11P81 Elementary theory of partitions 05A40 Umbral calculus 33D80 Connections of basic hypergeometric functions with quantum groups, Chevalley groups, \(p\)-adic groups, Hecke algebras, and related topics 33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\) Keywords:umbral calculus; Bailey chain; Rogers-Ramanujan identity; pentagonal number theorem; Jacobi triple product identity; Macdonald identities PDFBibTeX XMLCite \textit{G. E. Andrews}, J. Comb. Theory, Ser. A 91, No. 1--2, 464--475 (2000; Zbl 0985.11048) Full Text: DOI Digital Library of Mathematical Functions: Strong Bailey Lemma ‣ §17.12 Bailey Pairs ‣ Properties ‣ Chapter 17 𝑞-Hypergeometric and Related Functions References: [1] Andrews, G. E., (Rota, G.-C., The Theory of Partitions. The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, 2 (1976), Addison-Wesley: Addison-Wesley Reading) · Zbl 0371.10001 [2] Andrews, G. E., Multiple series Rogers-Ramanujan type identities, Pac. J. Math., 141, 267-283 (1984) · Zbl 0547.10012 [3] Andrews, G. E., \(q\)-Series, Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra. \(q\)-Series, Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra, CBMS Regional Conference Lecture Series, 66 (1986), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0594.33001 [4] Berkovich, A.; McCoy, B. M.; Schilling, A., \(N=2\) supersymmetry and Bailey pairs, Phys. A, 228, 33-62 (1996) [5] Dickson, L. E., History of the Theory of Numbers. History of the Theory of Numbers, Carnegie Inst. of Washington, 2 (1920) · JFM 48.0137.02 [6] Gasper, G.; Rahman, M., (Rota, G.-C., Basic Hypergeometric Series. Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, 35 (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0695.33001 [7] Humbert, G., Démonstration analytique d’une formule de Liouville, Bull. Sci. math. (2), 34, 29-31 (1910) · JFM 41.0510.03 [8] Macdonald, I. G., Affine root systems and Dedekind’s \(η\)-function, Invent. Math., 15, 91-143 (1972) · Zbl 0244.17005 [9] Paule, P., The concept of Bailey chains, Sém. Lothar. Combin. B, 18f, 24 (1987) · Zbl 0978.05521 [10] Rogers, L. J., On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. (2), 16, 315-336 (1917) · JFM 46.0109.01 [11] Rota, G. C., Ten mathematics problems I will never solve, DMV Mitteilungen, 2, 45-52 (1998) · Zbl 1288.00005 [12] Stanton, D., An elementary approach to the Macdonald identities, (Stanton, D., \(q\)-Series and Partitions. \(q\)-Series and Partitions, IMA Volumes in Mathematics and Its Applications, 18 (1989), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0736.05010 [13] Winquist, L., An elementary proof of \(p(11m+6)\)≡0 (mod11), J. Combin. Theory, 6, 56-59 (1969) · Zbl 0241.05006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.