Colby, Robert R.; Fuller, Kent R. Costar modules. (English) Zbl 0990.16009 J. Algebra 242, No. 1, 146-159 (2001). The authors introduce a new type of modules which induce generalizations of Morita duality and are, in some sense, dual to the \(*\)-modules of C. Menini and A. Orsatti [Rend. Semin. Mat. Univ. Padova 82, 203-231 (1989; Zbl 0701.16007)], whence the name ‘costar modules’. A module \(Q_R\) with endomorphism ring \(S=\text{End}(Q_R)\) is a costar module whenever the \(_SQ_R\)-duals induce a duality between the class of torsionless right \(R\)-modules whose \(Q\)-duals are finitely generated over \(S\) and the class of finitely generated torsionless left \(S\)-modules. It is shown that the class of costar modules contains other classes of modules that induce generalizations of Morita duality, namely, quasi-duality modules, and cotilting modules, and also that, over a finite dimensional algebra \(k\), finitely generated costar modules are just the \(k\)-duals of \(*\)-modules. In the last part of the paper, a natural strengthening of costar modules, called strongly costar modules, is considered. The resulting class not only contains all cotilting modules, but also all the bimodules that induce generalized Morita dualities in the sense of R. R. Colby [Commun. Algebra 17, No. 7, 1709-1722 (1989; Zbl 0677.16026)]. Reviewer: J.L.Gómez-Pardo (Santiago de Compostela) Cited in 4 ReviewsCited in 10 Documents MSC: 16D90 Module categories in associative algebras 16D20 Bimodules in associative algebras Keywords:costar modules; star modules; cotilting modules; quasi-duality modules; Morita dualities; tilting modules; bimodules Citations:Zbl 0701.16007; Zbl 0677.16026 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Anderson, F. W.; Fuller, K. R., Rings and Categories of Modules (1992), Springer-Verlag: Springer-Verlag New York/Heidelberg/Berlin · Zbl 0242.16025 [2] Assem, I., Tilting Theory—An Introduction. Tilting Theory—An Introduction, Topics in Algebra, 26 (1990), Banach Center Publications, p. 127-180 · Zbl 0726.16008 [3] Bongartz, K., Tilted Algebras. Tilted Algebras, Lecture Notes in Mathematics, 903 (1981), Springer-Verlag: Springer-Verlag New York/Heidelberg/Berlin, p. 26-38 · Zbl 0478.16025 [4] Colby, R. R., A generalization of Morita duality and the tilting theorem, Comm. Alg., 17, 1709-1722 (1989) · Zbl 0677.16026 [5] Colby, R. R., A cotilting theorem for rings, Methods in Module Theory (1993), Dekker: Dekker New York, p. 33-37 · Zbl 0808.16005 [6] Colby, R. R.; Fuller, K. R., Tilting, cotilting, and serially tilted rings, Comm. Algebra, 18, 1585-1615 (1990) · Zbl 0703.16013 [7] Colpi, R., Some remarks on equivalences between categories of modules, Comm. Algebra, 18, 1935-1951 (1990) · Zbl 0708.16002 [8] Colpi, R.; D’Este, G., Equivalences represented by faithful non-tilting ∗-modules, Canad. Math. Soc. Conf. Proc., 24, 103-110 (1998) · Zbl 0952.16006 [9] Colpi, R.; D’Este, G.; Tonolo, A., Quasi-tilting modules and counter equivalences, J. Algebra, 191, 461-494 (1997) · Zbl 0876.16004 [10] Colpi, R.; Menini, C., On the structure of ∗-modules, J. Algebra, 158, 400-419 (1993) · Zbl 0795.16005 [11] Colpi, R.; Tonolo, A.; Trlifaj, J., Partial cotilting modules and the lattices induced by them, Comm. Algebra, 25, 3225-3237 (1997) · Zbl 0893.16017 [12] D’Este, G.; Happel, D., Representable equivalences are represented by tilting modules, Rend. Sem. Mat. Univ. Padova, 83, 77-80 (1990) · Zbl 0706.16011 [13] Fuller, K., Density and equivalence, J. Algebra, 29, 528-550 (1974) · Zbl 0306.16020 [14] Fuller, K. R., A note on quasi-duality, (Dikranjan, D.; Salce, L., Abelian Groups, Module Theory, and Topology. Abelian Groups, Module Theory, and Topology, Lecture Notes in Pure and Applied Mathematics, 201 (1998), Dekker: Dekker New York) · Zbl 0188.08904 [15] Fuller, K. R.; Xue, W., On quasi-duality modules, Comm. Algebra, 28, 1919-1937 (2000) · Zbl 0951.16002 [16] Gómez Pardo, J. L.; Guil Asensio, P. A.; Wisbauer, R., Morita dualities induced by the \(m\)-dual functors, Comm. Algebra, 22, 5903-5934 (1994) · Zbl 0818.16004 [17] Happel, D.; Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc., 274, 399-443 (1982) · Zbl 0503.16024 [18] Hügel, L. Angeleri, Finitely cotilting modules, Comm. Algebra, 28, 2147-2172 (2000) · Zbl 0970.16008 [19] Menini, C.; Orsatti, A., Good dualities and strongly quasi-injective modules, Ann. Mat. Pure Appl. (4), 127, 187-230 (1981) · Zbl 0476.16029 [20] Menini, C.; Orsatti, A., Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova, 82, 203-231 (1989) · Zbl 0701.16007 [21] Miyashita, Y., Tilting modules of finite projective dimension, Math. Z., 193, 113-146 (1986) · Zbl 0578.16015 [22] Sandomierski, F. L., Linearly compact modules and local Morita duality, (Gordon, R., Ring Theory (1972), Academic Press: Academic Press New York), 333-346 · Zbl 0234.16013 [23] Tachikawa, H., Quasi Frobenius Rings and Generalizations. Quasi Frobenius Rings and Generalizations, Lecture Notes in Mathematics, 351 (1973), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0271.16004 [24] A. Tonolo, On a finitistic cotilting-type duality, Comm. Algebra, to appear.; A. Tonolo, On a finitistic cotilting-type duality, Comm. Algebra, to appear. · Zbl 1017.16003 [25] Zelmanowitz, J. M.; Jansen, W., Duality modules and Morita duality, J. Algebra, 129, 257-277 (1989) · Zbl 0689.16009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.