Brebbia, C. A. (ed.); Tadeu, A. (ed.); Popov, V. (ed.) Boundary elements XXIV: Incorporating meshless solutions. 24th world conference, Sintra, Portugal, June 17–19, 2002. (English) Zbl 0991.00034 Advances in Boundary Elements 13. Southampton: WIT Press (ISBN 1-85312-914-3). 754 p. (2002). Show indexed articles as search result. The articles of this volume will be reviewed individually. The preceding conference (23rd, 2001) has been reviewed (see Zbl 0970.00025).Indexed articles:Tadeu, A., The BEM at the Constructions Lab in the University of Coimbra., 3-12 [Zbl 1107.74348]Vaz, G. B.; Eça, L.; Falcão de Campos, J. A. C., On the verification of a potential-based low-order boundary element method for incompressible flows, 13-24 [Zbl 1018.76029]Brito-Melo, A.; Sarmento, A. J. N. A., Numerical modelling of OWC wave-power plants of the oscillating water column type, 25-34 [Zbl 1012.80504]Alves, C. J. S.; Pereira, B.; Serranho, P., Scattering by cracks: numerical simulations using a boundary finite element method., 35-44 [Zbl 1107.74337]Fernandes, J. L. M.; Rodrigues, J. M. C.; Martins, P. A. F., Thermo-mechanincal analysis of metal forming processes through a combined finite element-boundary element approach., 45-54 [Zbl 1107.74340]Liu, G. R.; Gu, Y. T., Boundary meshfree methods based on the boundary point interpolation methods, 57-66 [Zbl 1011.65089]Alves, C. J. S.; Chen, C. S.; Săler, B., The method of fundamental solutions for solving Poisson problems, 67-76 [Zbl 1011.65086]Kita, E.; Ikeda, Y.; Kamiya, N., Solution of Poisson equation by Trefftz method, 77-86 [Zbl 1011.65085]Li, X.; Golberg, M. A., On methods for solving the Dirichlet problem for Poisson’s equation, 87-96 [Zbl 1013.65130]Liu, Zhenyu; Korvink, J. G., Accurately solving the Poisson equation by combining multiscale radial basis functions and Gaussian quadrature, 97-104 [Zbl 1013.65126]Gáspár, C., A meshless boundary element technique based on multi-level iterated Helmholtz-type interpolation, 105-114 [Zbl 1011.65090]Muleshkov, A. S.; Golberg, M. A.; Cheng, A. H-D.; Chen, C. S., Polynomial particular solutions for Poisson problems, 115-124 [Zbl 1011.65087]Chen, W., Some recent advances on the RBF, 125-134 [Zbl 1013.65132]Hon, Y. C.; Wei, T., A meshless computational method for solving inverse heat conduction problem, 135-144 [Zbl 1011.65065]Li, J.; Chen, C. S.; Pepper, D.; Chen, Y., Mesh-free method for groundwater modeling., 145-154 [Zbl 1086.76562]Peplow, A. T.; Finnveden, S., Sound transmission through inhomogeneous waveguides, 155-163 [Zbl 1012.78511]Leitão, V. M. A.; Tiago, C. M., The use of radial basis functions for one-dimensional structural analysis problems., 165-179 [Zbl 1086.74537]Westphal, T. jun.; Schnack, E., Hierarchical plate modelling by boundary elements., 183-196 [Zbl 1086.74546]Syngellakis, S.; Cherukunnath, N., Stability analysis of laminate plates by the boundary element method., 197-206 [Zbl 1086.74504]El-Zafrany, A., Boundary element stress analysis of plates on two-parameter foundation under generalized loading., 207-218 [Zbl 1086.74532]Nerantzaki, M. S.; Katsikadelis, J. T., Ponding on floating membranes., 219-230 [Zbl 1086.74538]Harb, A., Integral equation method for cylindrical shell under axisymmetric loads., 231-241 [Zbl 1086.74534]Palermo, L. jun., A strategy to perform the Reissner-Mindlin’s theory., 243-252 [Zbl 1086.74539]Sladek, V.; Sladek, J., BIE and Trefftz approximation, 255-265 [Zbl 1011.65091]Dumont, N. A.; Chaves, R. A. P.; Paulino, G. H., The hybrid boundary element method applied to functionally graded materials., 267-276 [Zbl 1086.74531]Gaul, L.; Moser, F.; Fischer, M., A non-singular hybrid boundary element formulation incorporating a higher-order fundamental solution., 277-285 [Zbl 1086.74533]Procházka, P., The BEM formulation of the distinct element method., 287-296 [Zbl 1086.74540]Fam, G. S. A.; Rashed, Y. F., A study on the source points locations in the method of fundamental solution, 297-312 [Zbl 1011.65092]Popov, V.; Power, H., Two multipole alternatives based on Taylor series expansions for 3D BEM elasticity formulation., 313-326 [Zbl 1086.74524]Allodi, A.; Castelli, M.; Scavia, C., Implementation of the slip-weakening model in a displacement discontinuity method based numerical technique., 327-337 [Zbl 1086.74527]Bayliss, M.; El-Zafrany, A., Boundary element analysis of hyperelastic elastomeric materials., 339-350 [Zbl 1037.74053]Tanaka, M.; Matsumoto, T.; Suda, Y., A boundary element method using DRM for nonlinear heat conduction problems, 353-362 [Zbl 1014.65127]Honnor, M. E.; Davies, A. J., The Laplace transform dual reciprocity boundary element method for nonlinear transient field problems, 363-372 [Zbl 1011.65075]Davies, A. J.; Toutip, W.; Kane, S. J., The dual reciprocity method for solving biharmonic problems, 373-380 [Zbl 1011.65094]Rashed, Y. F., Dual reciprocity formulation for elasticity problems using compact supported radial basis functions., 381-393 [Zbl 1037.74055]Natalini, B.; Popov, V., An improved DRM representation of partial derivatives., 395-407 [Zbl 1086.65536]Santos, P.; Tadeu, A., Acoustic insulation provided by a single elastic wall dividing a tunnel calculated via BEM., 411-420 [Zbl 1086.74542]Shang, Dejiang; He, Zuoyong, The prediction of sound and vibration from a cylindrical double-shell by FEM and BEM., 421-426 [Zbl 1086.74526]Pereira, A.; Godinho, L.; Tadeu, A., Pressure field variation analysis for the detection of submerged rigid pipelines., 427-436 [Zbl 1086.76538]DeGiorgio, V. G.; Wimmer, S. A.; Hogan, E.; Lucas, K. E., Modeling the experimental environment for shipboard ICCP systems, 439-447 [Zbl 1012.78513]Poljak, D.; Jajac, B.; Kovač, N., Transient radiation of a thin wire antenna buried in a dielectric half space, 449-456 [Zbl 1012.78514]Poljak, D.; Doric, V.; Antonijevic, S.; Roje, V., Galerkin-Bubnov boundary element analysis of the Yagi-Uda array, 457-463 [Zbl 1012.78016]Adamiak, K.; Jaworek, A.; Krupa, A., Deposition of small dust particles on distorted liquid droplets in an electric field., 465-474 [Zbl 1086.76530]Santana Diaz, E.; Adey, R., Optimisation of the performance of an ICCP system by changing current supplied and position of the anode., 475-485 [Zbl 1086.78507]Jecl, R.; Škerget, L.; Petrešin, E., BEM for natural convection in non-Newtonian fluid saturated porous cavity., 489-500 [Zbl 1086.76533]Tipton, D. G.; Mondy, L. A.; Ingber, M. S.; Graham, A. L., Analysis of sedimentation in viscous suspensions using the BEM., 501-510 [Zbl 1086.76540]Nikolayev, V. S.; Beysens, D. A., 2D BEM modeling of a singular thermal diffusion free boundary problem with phase change., 511-525 [Zbl 1086.76537]Hayashi, K.; Onishi, K., Alternating direction method for the external Helmholtz equation, 529-538 [Zbl 1013.65138]Mansur, W. J.; Abreu R., A. I.; Carrer, J. A. M.; Ferro, M. A. C., Wave propagation analysis in the frequency domain: Initial conditions contribution, 539-548 [Zbl 1011.65076]Lee, H. S.; Kim, S. D.; Oh, B. C., Multidirectional random waves in a harbor with partially reflecting boundaries., 549-558 [Zbl 1086.76535]Kanoh, M.; Okuzonol, H.; Nakamural, N.; Kuroki, T.; Power, H., Boundary element and experimental solutions to water motion of incident waves against quadrilateral breakwaters., 559-567 [Zbl 1086.76534]Touhei, T., Analysis of scattering waves in an elastic layered medium caused by a scattering object and a plane incident wave., 569-578 [Zbl 1086.74508]Godinho, L.; Branco, F.; Tadeu, A., 3D wave propagation analysis of infinite ring-shaped structures submerged in a fluid medium., 579-588 [Zbl 1086.76531]Dolven, E.; Yeh, H., Modeling seaquakes using BIEM., 589-598 [Zbl 1086.74530]Karakostas, C. Z.; Manolis, G. D., Seismic behaviour of tunnels in random soils by the SBEM., 601-610 [Zbl 1086.74535]Idone, G.; Maugeri, A.; Vitanza, C., Equilibrium problems in elastic-plastic torsion., 611-616 [Zbl 1058.74023]Syngellakis, S.; Wu, J., Comparison of current methods for polymer analysis by boundary elements., 617-626 [Zbl 1086.74543]Brož, P., Modelling crack characteristics by boundary elements., 627-636 [Zbl 1086.74529]Vodička, R.; Blázquez, A.; París, F.; Mantič, V., Comparing the conventional displacement, first-kind and second-kind BIEs in frictionless contact problems., 637-646 [Zbl 1086.74545]Procházka, P.; Petrtýl, M., Localization of macroproperties of compact bone tissue by the BEM., 649-658 [Zbl 1086.74541]Koguchi, H.; Minaki, K., Boundary element analysis for a stress singularity field near a vertex in two-phase transversely isotropic materials., 659-668 [Zbl 1086.74536]Ingham, D. B., The solution of the two-dimensional Stokes equations., 671-678 [Zbl 1086.76532]Rus, G.; Gallego, R., Geometrical sensitvity of the hypersingular boundary integral equation: Application to crack identification, 679-688 [Zbl 1032.74053]Birginie, J.-M., Determination of local electrical impedance by the resolution of an inverse problem with the boundary element method, 689-698 [Zbl 1009.78007]Ingber, M. S.; Schmidt, C. C.; Tanski, J. A.; Phillips, J., A parallel domain decomposition method for parabolic partial differential equations, 701-710 [Zbl 1011.65066]Barrett, D. J. S.; El-Zafrany, A.; McLuckie, I. R. W., Elasto-hydrodynamic analysis of bearings by coupling boundary element and finite difference methods., 711-720 [Zbl 1086.74520]Elleithy, W. M.; Tanaka, M., Interface relaxation algorithms for coupling the FEM and BEM, 721-730 [Zbl 1011.65083]Vable, M.; Fox, M. E., Tests for multiple materials’ problems., 731-740 [Zbl 1086.74544]Mammoli, A. A., Fast evaluation of domain integrals in complex geometries, 741-752 [Zbl 1012.65128] MSC: 00B25 Proceedings of conferences of miscellaneous specific interest 65-06 Proceedings, conferences, collections, etc. pertaining to numerical analysis 76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics Keywords:Sintra (Portugal); Proceedings; Conference; Boundary elements Citations:Zbl 0970.00025 PDF BibTeX XML Cite \textit{C. A. Brebbia} (ed.) et al., Boundary elements XXIV: Incorporating meshless solutions. 24th world conference, Sintra, Portugal, June 17--19, 2002. Southampton: WIT Press (2002; Zbl 0991.00034)