×

A new finite volume scheme for solving Maxwell’s system. (English) Zbl 0994.78021

Summary: A new finite volume scheme to solve Maxwell’s equations is presented. The approach is based on a leapfrog time scheme and a centered flux formula. This method is well suited for handling complex geometries, and therefore we can use unstructured grids. It is also able to capture the discontinuities of the electromagnetic fields through different media, without producing spurious oscillations. Owing to these properties, we can treat difficult problems, such as computing a scattered wave across complex objects. An analysis of the scheme is presented and numerical experiments are performed.

MSC:

78M25 Numerical methods in optics (MSC2010)
78A25 Electromagnetic theory (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cioni, J.P. Fézoui, L. and Issautier, D. (1994), ”High-order upwind schemes for solving time-domain Maxwell equations”, La Recherche Aérospatiale, Vol 5, pp. 319-28.
[2] DOI: 10.1006/jcph.1997.5836 · Zbl 0898.65055 · doi:10.1006/jcph.1997.5836
[3] DOI: 10.1016/0021-9991(87)90031-3 · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[4] DOI: 10.1006/jcph.1993.1086 · Zbl 0777.65070 · doi:10.1006/jcph.1993.1086
[5] DOI: 10.1080/02726349008908233 · doi:10.1080/02726349008908233
[6] Oumensour, A. (1989), Conditions aux limites absorbantes pour l’équation de Maxwell en dimension trois, Institut de Mathématiques USTHB, Alger.
[7] DOI: 10.1109/5.32061 · doi:10.1109/5.32061
[8] DOI: 10.1016/0021-9991(74)90011-4 · Zbl 0291.65023 · doi:10.1016/0021-9991(74)90011-4
[9] Yee, K.S. (1966), ”Numerical solution of initial boundary value problem in isotropic media”, IEEE Trans. Antenna Propagat, Vol. AP-14 No. 3, pp. 302-7. · Zbl 1155.78304
[10] DOI: 10.1109/8.320754 · doi:10.1109/8.320754
[11] DOI: 10.1109/8.585738 · doi:10.1109/8.585738
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.