Karabegov, A. V.; Schlichenmaier, M. Identification of Berezin-Toeplitz deformation quantization. (English) Zbl 0997.53067 J. Reine Angew. Math. 540, 49-76 (2001). A. V. Karabegov has shown in [Commun. Math. Phys. 180, 745-755 (1996; Zbl 0866.58037)] that there is a one to one correspondence between deformation quantizations with separation of variables on a Kähler manifold \((M,\omega)\) (i.e. differential star products on \(M\) such that on any chart of \(M\) left star multiplication by holomorphic functions and right star multiplication by antiholomorphic functions are point-wise multiplication of functions) and closed formal (1,1) forms \((1/\nu)\omega +\omega_0+\nu \omega_1+\). Moreover [A. V. Karabegov, Lett. Math. Phys. 43, 347-357 (1998; Zbl 0938.53049)] these star products are classified (up to equivalence) by formal cohomology classes \((1/i\nu)\omega +H^2(M, {\mathbb C}[[\nu]])\). When \((M,\omega)\) is a (prequantizable) compact Kaehler manifold, it was shown by M. Schlichenmeier [Conférence Moshé Flato (Dijon, France 1999), G. Dito and D. Sternhaimer (eds.), Kluwer Vol. 2, 289-306 (2000; Zbl 1028.53085)] that the Berezin-Toeplitz quantization map leads to a star product on \(M\) called Berezin-Toeplitz deformation quantization. In the present work, the Berezin-Toeplitz deformation quantization is proved to be a star product with separation of variables and the corresponding formal form is explicitly determined especially by use of results on Szegő kernels from L. Boutet de Monvel and S. Sjöstrand [Astérisque 34/35, 123-164 (1976; Zbl 0344.32010)]. The formal cohomology class of Berezin-Toeplitz deformation quantization is also obtained. Reviewer: Benjamin Cahen (Metz) Cited in 1 ReviewCited in 52 Documents MSC: 53D55 Deformation quantization, star products 53D50 Geometric quantization 81S10 Geometry and quantization, symplectic methods Keywords:Kähler manifold; Berezin-Toeplitz deformation quantization; star product; Szegő kernels Citations:Zbl 0866.58037; Zbl 0938.53049; Zbl 1028.53085; Zbl 0344.32010 PDF BibTeX XML Cite \textit{A. V. Karabegov} and \textit{M. Schlichenmaier}, J. Reine Angew. Math. 540, 49--76 (2001; Zbl 0997.53067) Full Text: DOI arXiv Link OpenURL References: [1] Bayen F., Lett. Math. Phys. 1 pp 521– (1977) [2] Berceanu St., JGP 34 pp 336– (2000) [3] F. A. Berezin, Quantization, Math. USSR-Izv. 8 (1974), 1109-1165. [4] F., Math. USSR-Izv. 9 pp 341– (1975) [5] Bertelson M., Classical Quantum Gravity 14 pp A93– (1997) [6] Bordemann M., Commun. Math. Phys. 165 pp 281– (1994) [7] Bordemann M., Lett. Math. Phys. 41 pp 243– (1997) [8] L. Boutet de Monvel, and V. Guillemin, The spectral theory of Toeplitz operators, Ann. Math. Stud. 99, Princeton University Press, Princeton 1981. · Zbl 0469.47021 [9] L. Boutet de Monvel, and J. SjoEstrand, Sur la singulariteA des noyaux de Bergman et de SzegoE, AsteArisque 34-35 (1976), 123-164. [10] Cahen M., JGP 7 pp 45– (1990) [11] Cahen M., Trans. Amer. Math. Soc. 337 pp 73– (1993) [12] Cahen M., Lett. Math. Phys. 30 pp 291– (1994) [13] Cahen M., Lett. Math. Phys. 34 pp 159– (1995) [14] Deligne P., New Ser. 1 pp 667– (1995) [15] Wilde M. De, Lett. Math. Phys. 7 pp 487– (1983) [16] M. Englis , The asymptotics of a Laplace integral on a KaEhler manifold, preprint 1999. · Zbl 1218.32002 [17] B. V. Fedosov, Deformation quantization and index theory, Akademie Verlag, Berlin 1996. · Zbl 0867.58061 [18] B., Prilozhen. 25 pp 184– (1990) [19] Lett. Math. Phys. 35 pp 85– (1995) [20] E. Hawkins, The Correspondence between Geometric Quantization and Formal Deformation Quantization, preprint 1998, math/9811049. [21] L. HoErmander, The Analysis of Linear Partial Di erential Operators I, Distribution Theory and Fourier Analysis, Springer Verlag, New York1983. · Zbl 0473.35079 [22] A., Commun. Math. Phys. 180 pp 745– (1996) [23] A., Lett. Math. Phys. 43 pp 347– (1998) [24] A., Lett. Math. Phys. 45 pp 217– (1998) [25] A., Commun. Math. Phys. 200 pp 355– (1999) [26] Karabegov A. V., Kluwer 2 pp 167– (2000) [27] Melin A., Lect. Notes Math. 459 pp 120– (1975) [28] Lett. Math. Phys. 11 pp 361– (1986) [29] Moreno C., Lett. Math. Phys. 7 pp 181– (1983) [30] Nest R., Commun. Math. Phys. 172 pp 223– (1995) [31] Omori H., Adv. Math. 85 pp 224– (1991) [32] J. H. Rawnsley, Coherent states and KaEhler manifolds, Quart. J. Math. Oxford Ser. (2) 28 (1977), 403-415. · Zbl 0387.58002 [33] M. Schlichenmaier, Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik: Berezin-Toeplitz-Quantisierung und globale Algebren der zweidimensionalen konformen Feldtheorie, Mannheim 1996. [34] M. Schlichenmaier, Berezin-Toeplitz quantization of compact KaEhler manifolds, in: Quantization, Coherent States and Poisson Structures, Proc. XIV’th Workshop on Geometric Methods in Physics (Bia owiezCa.Poland, 9-15 July 1995), A. Strasburger, S. T. Ali, J.P. Antoine, J.P. Gazeau, and A. Odzijewicz, eds., Polish Scienti c Publisher PWN (1998), 101-115. [35] M. Schlichenmaier, Berezin-Toeplitz quantization and Berezin symbols for arbitrary compact KaEhler manifolds, in: Coherent States, Quantization and Gravity, Proceedings of the XVIIthworkshop on geometric methods in physics, Bia owiezCa, Poland.July3-10, 1998, M. Schlichenmaier, A. Strasburger, S. T. Ali, A. Odzijewicz, eds., Warsaw University Press (2001), 45-56. [36] Kluwer 2 pp 289– (2000) [37] Geom. 32 pp 99– (1990) [38] Commun. Math. Phys. 197 pp 167– (1998) [39] Int. Math. Res. Not. 6 pp 317– (1998) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.