×

Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I: Low order conforming, nonconforming, and mixed FEM. (English) Zbl 0997.65126

This paper deals with the robust reliability of all averaging techniques, robust with respect to violated (local) symmetry of meshes and superconvergence and robust with respect to other boundry conditions or other finite element methods (FEMs). Basic estimates re provided for a local and global averaging technique and their equivalence. The consequences to averaging techniques uses in a posteriori error control for first-order conforming, nonconforming and mixed finite element schemes are presented. The theoretical results are supported by numerical experiments for the Lapalce equation with mixed boundary conditions.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Citations:

Zbl 0997.65127

Software:

na14
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. ALBERTY, C. CARSTENSEN, S.A. FUNKEN: Remarks around \(50\) lines of Matlab: short finite element implementation. Numer. Algorithms 20 (1999) 117-137. CMP 2001:01 · Zbl 0938.65129
[2] A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385 – 395. · Zbl 0866.65068
[3] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736 – 754. · Zbl 0398.65069
[4] I. Babuška, T. Strouboulis, C. S. Upadhyay, S. K. Gangaraj, and K. Copps, Validation of a posteriori error estimators by numerical approach, Internat. J. Numer. Methods Engrg. 37 (1994), no. 7, 1073 – 1123. · Zbl 0811.65088
[5] S. BARTELS, C. CARSTENSEN: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM, Math. Comp., posted on February 4, 2002, PII S 0025-5718(02)01412-6 (to appear in print). · Zbl 0997.65127
[6] R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math. 4 (1996), no. 4, 237 – 264. · Zbl 0868.65076
[7] Dietrich Braess, Finite elements, Cambridge University Press, Cambridge, 1997. Theory, fast solvers, and applications in solid mechanics; Translated from the 1992 German original by Larry L. Schumaker. · Zbl 0754.65084
[8] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431 – 2444. · Zbl 0866.65071
[9] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. · Zbl 0804.65101
[10] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[11] Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465 – 476. · Zbl 0864.65068
[12] Carsten Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1187 – 1202. · Zbl 0948.65113
[13] C. CARSTENSEN, S.A. FUNKEN: Constants in Clément-interpolation error and residual based a posteriori error estimates in Finite Element Methods. East-West J. Numer. Math. 8 (3) (2000) 153-175. CMP 2001:07
[14] C. CARSTENSEN, S.A. FUNKEN: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems, Math. Comp., 70 (2001), 1353-1381. · Zbl 1014.76042
[15] Carsten Carstensen and Stefan A. Funken, Averaging technique for FE — a posteriori error control in elasticity. I. Conforming FEM, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 18-19, 2483 – 2498. · Zbl 0981.74063
[16] C. CARSTENSEN, S.A. FUNKEN: Averaging technique for FE–a posteriori error control in elasticity. Part II: \(\lambda\)-independent estimates, Comput. Methods Appl. Mech. Engrg., 190 (2001), 4663-4675. · Zbl 1054.74048
[17] C. CARSTENSEN, S.A. FUNKEN: Averaging technique for FE–a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM, Comput. Methods Appl. Mech. Engrg. (to appear). · Zbl 1054.74049
[18] Carsten Carstensen and Rüdiger Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999), no. 5, 1571 – 1587. · Zbl 0938.65124
[19] Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 9 (1975), no. R-2, 77 – 84 (English, with Loose French summary). · Zbl 0368.65008
[20] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[21] E. Dari, R. Duran, C. Padra, and V. Vampa, A posteriori error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 4, 385 – 400 (English, with English and French summaries). · Zbl 0853.65110
[22] Ricardo Durán, María Amelia Muschietti, and Rodolfo Rodríguez, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math. 59 (1991), no. 2, 107 – 127. · Zbl 0716.65098
[23] Kenneth Eriksson, Don Estep, Peter Hansbo, and Claes Johnson, Introduction to adaptive methods for differential equations, Acta numerica, 1995, Acta Numer., Cambridge Univ. Press, Cambridge, 1995, pp. 105 – 158. · Zbl 0829.65122
[24] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. · Zbl 0585.65077
[25] W. HOFFMANN, A.H. SCHATZ, L.B. WAHLBIN, G. WITTUM: Asymptotically exact a posteriori error estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes. Math. Comp. 70 (2001) 897-909. · Zbl 0969.65099
[26] Ronald H. W. Hoppe and Barbara Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 2, 237 – 263 (English, with English and French summaries). · Zbl 0843.65075
[27] Guido Kanschat and Franz-Theo Suttmeier, A posteriori error estimates for nonconforming finite element schemes, Calcolo 36 (1999), no. 3, 129 – 141. · Zbl 0936.65128
[28] R. RODRIGUEZ: Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differential Equations 10 (1994) 625-635. · Zbl 0806.73069
[29] Rodolfo Rodríguez, A posteriori error analysis in the finite element method, Finite element methods (Jyväskylä, 1993) Lecture Notes in Pure and Appl. Math., vol. 164, Dekker, New York, 1994, pp. 389 – 397. · Zbl 0837.65116
[30] R. VERFÜRTH: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996). · Zbl 0853.65108
[31] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), no. 2, 337 – 357. · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.