×

Spline solutions of linear sixth-order boundary-value problems. (English) Zbl 1001.65523


MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0377-0427(91)90202-U · Zbl 0727.65071 · doi:10.1016/0377-0427(91)90202-U
[2] DOI: 10.1080/00207169208804130 · Zbl 0773.65055 · doi:10.1080/00207169208804130
[3] DOI: 10.1080/00207169308804193 · Zbl 0820.65046 · doi:10.1080/00207169308804193
[4] Chandrasekhar S., Hydrodynamic and hydromagnetic stability (1961)
[5] DOI: 10.1016/0377-0427(93)90088-S · Zbl 0780.65046 · doi:10.1016/0377-0427(93)90088-S
[6] Siddiqi S. S., Spline solutions of high-order boundary-value problems, Ph.D. Thesis (1994)
[7] Twizell E. H., ”Numerical Mathemat-ics, Singapore 1988”, International Series of Numerical Mathematics Birkhauser-Verlag, Basel 86 pp 495– (1988)
[8] DOI: 10.1098/rspa.1990.0142 · Zbl 0722.65042 · doi:10.1098/rspa.1990.0142
[9] DOI: 10.1007/BF02521607 · Zbl 0847.76057 · doi:10.1007/BF02521607
[10] DOI: 10.1016/0377-0427(92)90010-U · Zbl 0772.65053 · doi:10.1016/0377-0427(92)90010-U
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.