Neumann, Michael H. On the effect of estimating the error density in nonparametric deconvolution. (English) Zbl 1003.62514 J. Nonparametric Stat. 7, No. 4, 307-330 (1997). Summary: It is quite common in the statistical literature on nonparametric deconvolution to assume that the error density is perfectly known. Since this seems to be unrealistic in many practical applications, we study the effect of estimating the unknown error density. We derive minimax rates of convergence and propose a modification of the usual kernel-based estimation scheme, which takes the uncertainty about the error density into account. A simulation study quantifies the possible gains by this new method in finite sample situations. Cited in 75 Documents MSC: 62G07 Density estimation Keywords:deconvolution; optimal rates of convergence; inverse problems; indirect observations Software:KernSmooth PDF BibTeX XML Cite \textit{M. H. Neumann}, J. Nonparametric Stat. 7, No. 4, 307--330 (1997; Zbl 1003.62514) Full Text: DOI References: [1] DOI: 10.1214/aos/1176345986 · Zbl 0507.62040 [2] DOI: 10.2307/1268623 · Zbl 0379.62023 [3] DOI: 10.1080/10485259308832568 · Zbl 1360.62119 [4] Fan J. Hall P. Martin M. Patil P. On local smoothing of nonparametric curve estimators Research Report CMA-SR23-93 Centre for Mathematics and its Applications, Australian National University UC Berkeley 1993 [5] DOI: 10.1093/biomet/77.3.529 · Zbl 0733.62046 [6] DOI: 10.1214/aos/1176349145 · Zbl 0779.62035 [7] DOI: 10.1007/BF00348751 · Zbl 0637.62036 [8] Hössjer O., Probab. Theory Rel. Fields (1996) [9] Hössjer O. Ruppert D. Transformation kernel density estimators using stochastic band-widths Technical Report 1993:12 Department of Mathematical Statistics, University of Lund 1993 [10] DOI: 10.1080/10485259408832608 · Zbl 1380.62151 [11] DOI: 10.1214/aos/1176324705 · Zbl 0839.62043 [12] DOI: 10.1111/j.1467-842X.1990.tb01031.x [13] DOI: 10.1093/biomet/82.2.327 · Zbl 0823.62033 [14] Jones M.C., Ann. Inst. Statist. Math. 46 pp 521– (1994) [15] Jones M.C., J. Amer. Statist. Assoc. (1996) [16] DOI: 10.1214/aoms/1177700079 · Zbl 0132.38905 [17] DOI: 10.2307/3315701 · Zbl 0799.62037 [18] DOI: 10.1214/aos/1176325365 · Zbl 0795.62042 [19] DOI: 10.1093/biomet/77.4.865 · Zbl 0712.62033 [20] DOI: 10.1002/9780470316849 [21] Silverman D. W., Density Estimation for Statistics and Data Analysis (1986) · Zbl 0617.62042 [22] DOI: 10.1214/aos/1176348768 · Zbl 0763.62024 [23] Wand M.P., Kernel Smoothing (1995) · Zbl 0854.62043 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.