×

Chaos control of Bonhoeffer-van der Pol oscillator using neural networks. (English) Zbl 1004.37067

The present paper deals with the control of chaos of a continuous time dynamical systems namely the Bonhoeffer-van der Pol (BVP shortly) oscillator using the feed-forward backpropagating neural network. The neural network is trained on two different controlling algorithms, namely the Ott-Grabogi-Yorke (OGY) method and Pyragas method of delayed feedback control. It is found that in the neural network trained on the OGY method, the control transient are smaller than using the direct OGY algorithm. However, in the neural network trained on the Pyragas method, the control transients are of the same order.

MSC:

37N35 Dynamical systems in control
93D15 Stabilization of systems by feedback
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ott, E.; Grebogi, C.; Yorke, J., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199 (1990) · Zbl 0964.37501
[2] Shinbrot, T.; Grebogi, C.; Ott, E.; Yorke, J. A., Using small perturbations to control chaos, Nature, 363, 411-417 (1993)
[3] Ditto, W. L.; Rauseo, S. N.; Spano, M. L., Experimental control of chaos, Phys. Rev. Lett., 65, 3211-3214 (1990)
[4] Hunt, E. R., Stabilizing high-period orbits in a chaotic system: the diode resonator, Phys. Rev. Lett., 67, 1953-1955 (1991)
[5] Roy, R.; Murphy, T. W.; Maier, T. D.; Gills, Z.; Hunt, E. R., Dynamical control of a chaotic laser: experimental stabilization of a globally coupled system, Phys. Rev. Lett., 68, 1259-1262 (1992)
[6] Paramananda, P.; Sherard, P.; Rollins, R. W.; Dewald, H. D., Control of chaos in an electrochemical cell, Phys. Rev. E, 47, R3003-R3006 (1993)
[7] Garfinkel, A.; Spano, M. L.; Ditto, W. L.; Weiss, J. N., Controlling cardiac chaos, Science, 257, 1230-1235 (1992)
[8] Schiff, J.; Jerger, K.; Duong, D. H.; Chang, T.; Spano, M. L.; Ditto, W. L., Controlling chaos in the brain, Nature, 370, 615-620 (1994)
[9] Singer, J.; Wang, Y. Z.; Bau, H. H., Controlling a chaotic system, Phys. Rev. Lett., 66, 1123-1125 (1991)
[10] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-428 (1992)
[11] Nitsche, G.; Dressler, U., Controlling chaotic dynamical systems using time delay coordinates, Physica D, 58, 153-164 (1992) · Zbl 1194.37136
[12] Nguyen, H.; Widrow, B., Neural networks for self-learning control systems, IEEE Control Syst. Mag., 18, 18-23 (1990)
[13] Pham; Liu, Neural networks for identification, processing and control (1996), Springer: Springer Berlin
[14] Albano, M.; Passamante, A.; Hediger, T.; Farrell, M. E., Reconstruction of chaotic attractors using neural network, Physica D, 58, 1-5 (1992) · Zbl 1194.68184
[15] Alsing, M.; Gavrielides, A.; Kovanis, V., Using neural networks for controlling chaos, Phys. Rev. E, 49, 1225-1231 (1994)
[16] Der R, Herrmann M. Nonlinear chaos control by neural nets. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN ‘94), vol. 2. Italy; 1994. p. 1227-30; Der R, Herrmann M. Nonlinear chaos control by neural nets. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN ‘94), vol. 2. Italy; 1994. p. 1227-30
[17] Otawara K, Fan LT. Controlling chaos with an artificial neural network. In: Proceedings of 1995 IEEE International Conference on Fuzzy Systems, vol. 4. Yokohama, Japan; 1995. p. 1943-48; Otawara K, Fan LT. Controlling chaos with an artificial neural network. In: Proceedings of 1995 IEEE International Conference on Fuzzy Systems, vol. 4. Yokohama, Japan; 1995. p. 1943-48
[18] Chen, G.; Chen, Y.; Ogmen, H., Identifying chaotic systems via a Wiener-type cascade model, IEEE Control Syst. Mag., 17, 29-36 (1997)
[19] Chen G, Dong X. Identification and control of chaotic systems: an artificial neural network approach. In: Proceedings of the IEEE International Symposium On Circ. Sys., 1995 April 29-May 3; Seattle, WA. p. 1177-82; Chen G, Dong X. Identification and control of chaotic systems: an artificial neural network approach. In: Proceedings of the IEEE International Symposium On Circ. Sys., 1995 April 29-May 3; Seattle, WA. p. 1177-82
[20] Chen, G.; Dong, X., From chaos to order – perspectives and methodologies in controlling chaotic nonlinear dynamical systems, Int. J. Bifur. Chaos, 3, 1363-1410 (1993) · Zbl 0886.58076
[21] Rajasekar, S.; Lakshmanan, M., Algorithms for controlling chaotic motion: application for the BVP oscillator, Physica D, 67, 282-300 (1993) · Zbl 0790.93072
[22] Bielawski, S.; Derozier, D.; Glorieux, P., Controlling unstable periodic orbits by a delayed continuous feedback, Phys. Rev. E, 49, 2, R971-R974 (1994)
[23] Chen, G.; Dong, X., On feedback control of chaotic dynamic systems, Int. J. Bifur. Chaos, 2, 407-411 (1992) · Zbl 0875.93176
[24] Rajasekar, S.; Lakshmanan, M., Controlling of chaos in Bonhoeffer-van der Pol oscillator, Int. J. Bifur. Chaos, 2, 1, 201-204 (1992) · Zbl 0875.93192
[25] Rajasekar, S., Controlling unstable periodic orbits in a Bonhoeffer-van der Pol equation, Chaos, Solitons & Fractals, 5, 2135-2144 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.