×

Linear elliptic boundary value problems with non-smooth data: Normal solvability on Sobolev-Campanato spaces. (English) Zbl 1009.35019

Summary: Linear elliptic boundary value problems of second order with non-smooth data (\(L^\infty\)-coefficients, Lipschitz domains, regular sets, non-homogeneous mixed boundary conditions) are considered. It is shown that such boundary value problems generate Fredholm operators between appropriate Sobolev-Campanato spaces, that the weak solutions are Hölder continuous up to the boundary and that they depend smoothly (in the sense of a Hölder norm) on the coefficients and on the right-hand sides of the equations and boundary conditions.

MSC:

35J25 Boundary value problems for second-order elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35J55 Systems of elliptic equations, boundary value problems (MSC2000)
47A53 (Semi-) Fredholm operators; index theories
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agmon, Comm. Pure Appl. Math. 17 pp 35– (1964)
[2] : Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems. In: Function Spaces, Differential Operators and Nonlinear Analysis (ed. by H.-J. Schmeisser, and H. Triebel ), pp. 9-126, Teubner-Texte zur Math. 133, Teubner Verlag, Stuttgart, 1993
[3] and : Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1993
[4] Campanato, Ricerche Mat. 12 pp 67– (1963)
[5] Campanato, Ann. Scuola Norm. Sup. Pisa 17 pp 175– (1963)
[6] Campanato, Ann. Mat. Pura Appl. 69 pp 321– (1965)
[7] : Sistemi Ellitici in Forma Divergenza. Regularietà all’Interno, Quaderni della Scuola Norm. Sup. Pisa, Pisa, 1980
[8] and : Second Order Elliptic Equations and Elliptic Systems, Translations of Mathematical Monographs 174, Providence, 1998 (Chinese Original: Beijing, 1991)
[9] Di Fazio, Differential Integral Equations 6 pp 383– (1993) · Zbl 0822.35036
[10] and : Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992 · Zbl 0804.28001
[11] Fraenkel, Proc. London Math. Soc. 39 pp 385– (1979)
[12] : Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics, Studies 105, Princeton University Press, Princeton, 1983
[13] : Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993
[14] and : Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften 224, Springer-Verlag, New York, 1983
[15] : Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24, Pitman, Boston, 1985 · Zbl 0695.35060
[16] Griepentrog, Z. Angew. Math. Mech. 79 pp 43– (1999)
[17] Griepentrog, WIAS-Preprint 616 (2000)
[18] Gröger, Math. Ann. 283 pp 679– (1989)
[19] Gröger, WIAS-Preprint 498 (1999)
[20] , and : Function Spaces, Academia, Prague, 1977
[21] : Multiple Integrals in the Calculus of Variations, Grundlehren der mathematischen Wissenschaften 130, Springer-Verlag, New York, 1966
[22] Murthy, Israel. J. Math. 13 pp 188– (1972)
[23] : Introduction to the Theory of Nonlinear Elliptic Equations, Teubner-Text zur Mathematik 52, Teubner-Verlagsgesellschaft, Leipzig, 1983
[24] Ragusa, Riv. Mat. Univ. Parma 3 pp 355– (1994)
[25] Rakotoson, J. Differential Equations 86 pp 102– (1990)
[26] Rakotoson, Comm. Partial Differential Equations 16 pp 1155– (1991)
[27] Recke, Comm. Partial Differential Equations 20 pp 1457– (1995)
[28] Recke, Preprint 94
[29] and : Sobolev Spaces of Fractal Order, Nemycki Operators and Nonlinear Partial Differential Equations, De Gruyter Series, Nonlinear Anal. Appl. 3, De Gruyter, Berlin, 1996
[30] Stampacchia, Ann. Mat. Pura Appl. 51 pp 1– (1960)
[31] : Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, London, 1987
[32] : Boundary Value Problems of Finite Elasticity: Local Theorems of Existence, Uniqueness and Analytic Dependence on Data, Springer Tracts in Natural Philosophy 31, Springer-Verlag, New York, 1988 · Zbl 0648.73019
[33] , and : Boundary Value Problems for Elliptic Systems, Cambridge University Press, Cambridge, 1995
[34] Xie, Nonlinear Anal. 24 pp 9– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.