×

Adaptive synchronization of uncertain chaotic systems via backstepping design. (English) Zbl 1015.37052

Summary: An approach for adaptive synchronization of uncertain chaotic systems is proposed using adaptive backstepping with tuning functions. Strong properties of global stability and asymptotic synchronization can be achieved. The proposed approach offers a systematic design procedure for adaptive synchronization of a large class of continuous-time chaotic systems in the chaos research literature. Simulation results are presented to show the effectiveness of the approach.

MSC:

37N35 Dynamical systems in control
93D15 Stabilization of systems by feedback
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37M05 Simulation of dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pecora, L.; Carroll, T., Synchronization in chaotic systems, Phys Rev Lett, 64, 821-824 (1990) · Zbl 0938.37019
[2] Chen, G.; Dong, X., From chaos to order (1998), World Scientific: World Scientific Singapore · Zbl 0908.93005
[3] Fradkov, A. L.; Pogromsky, A. Yu., Introduction to control of oscillations and chaos (1998), World Scientific: World Scientific Singapore · Zbl 0945.93003
[4] Cuomo, K. M.; Oppenheim, A. V.; Strogatz, S. H., Synchronization of Lorenz-based chaotic circuits with applications to communications, IEEE Trans Circuits Syst, 40, 626-633 (1993)
[5] Dedieu, H.; Kennedy, M. P.; Hasler, M., Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits, IEEE Trans Circuits Syst II, 40, 634-642 (1993)
[6] Chua, L. O.; Yang, T.; Zhong, G.-Q.; Wu, C. W., Adaptive synchronization of Chua’s oscillators, Int J Bifurc Chaos, 6, 189-201 (1996)
[7] Dedieu, H.; Ogorzalek, M. J., Identifiability and identification of chaotic systems based on adaptive synchronization, IEEE Trans Circuits Syst I, 44, 948-962 (1997)
[8] Kolumban, G.; Kennedy, M. P.; Chua, L. O., Role of synchronization in digital communications using chaos - Part I: fundamentals of digital communications, IEEE Trans Circuits Syst I: Fundamental Theory and Applications, 44, 927-936 (1997)
[9] Kolumban, G.; Kennedy, M. P.; Chua, L. O., Role of synchronization in digital communications using chaos - Part II: chaotic modulation and chaotic synchronization, IEEE Trans Circuits Syst I: Fundamental Theory and Applications, 45, 1129-1141 (1998) · Zbl 0991.93097
[10] Fradkov, A. L.; Pogromsky, A. Yu., Speed gradient control of chaotic continuous-time systems, IEEE Trans Circuits Syst I, 43, 907-913 (1993)
[11] Nijmeijer, H.; Mareels, I., Observer looks at synchronization, IEEE Trans Circuits Syst I, 44, 882-890 (1997)
[12] Pogromsky, A. Yu., Passivity based design of synchronizing systems, Int J Bifurc Chaos, 8, 295-320 (1998) · Zbl 0938.93056
[13] Suykens, J. A.K.; Curran, P. F.; Vandewalle, J.; Chua, L. O., Robust nonlinear \(H_∞\) synchronization of chaotic Lur’e systems, IEEE Trans Circuits Syst I, 44, 891-904 (1997) · Zbl 0967.93508
[14] Fradkov AL, Nijmeijer H, Markov AYu. On adaptive observer-based synchronization for communication. In: Proceedings of the 14th World Congress of IFAC, Beijing, China, 1993. p. 461-66; Fradkov AL, Nijmeijer H, Markov AYu. On adaptive observer-based synchronization for communication. In: Proceedings of the 14th World Congress of IFAC, Beijing, China, 1993. p. 461-66
[15] Ge SS, Wang C, Lee TH. Adaptive backstepping control of a class of chaotic systems. Int J Bifurc Chaos 2000;10(5); Ge SS, Wang C, Lee TH. Adaptive backstepping control of a class of chaotic systems. Int J Bifurc Chaos 2000;10(5) · Zbl 1090.34555
[16] Ge SS, Wang C. Adaptive control of uncertain Chua’s circuits. IEEE Trans Circuits Syst I: Fundamental Theory and Applications (to appear); Ge SS, Wang C. Adaptive control of uncertain Chua’s circuits. IEEE Trans Circuits Syst I: Fundamental Theory and Applications (to appear) · Zbl 1046.93506
[17] Kanellakopoulos, I.; Kokotovic̀, P.; Morse, A., Systematic design of adaptive controllers for feedback linearizable systems, IEEE Trans Autom Control, 36, 1241-1253 (1991) · Zbl 0768.93044
[18] Krstic̀, M.; Kanellakopoulos, I.; Kokotovic̀, P., Adaptive nonlinear control without overparametrization, Syst & Control Lett, 19, 177-185 (1992) · Zbl 0763.93043
[19] Krstic̀, M.; Kanellakopoulos, I.; Kokotovic̀, P., Nonlinear and adaptive control design (1995), Wiley: Wiley New York · Zbl 0763.93043
[20] Ioannou, P. A.; Sun, J., Robust adaptive control (1996), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ · Zbl 0839.93002
[21] Rössler, O. E., An equation for continuous chaos, Physica Lett, 57A, 397-398 (1976) · Zbl 1371.37062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.