×

Friedmann-Robertson-Walker brane cosmological equations from the five-dimensional bulk (A)dS black hole. (English) Zbl 1015.83001

This is a review about similarities in equations for cosmological models. The authors consider the three types of Friedmann-Robertson-Walker models in an arbitrary number of spatial dimensions, and they discuss the following kinds of field equation: Einstein equation, Einstein-Maxwell equation, and brane cosmology equations. In the 5-dimensional case, they also use the Gauss-Bonnet term in the action. The relation to black holes is discussed, too. Entropy and partition functions are calculated in great detail here.
They find similarities of these equations with those stemming from the Carly-Verlinde formula in two-dimensional quantum field theory.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83F05 Relativistic cosmology
83E15 Kaluza-Klein and other higher-dimensional theories
83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1086/307221 · Zbl 1368.85002
[2] DOI: 10.1016/0550-3213(86)90552-3 · Zbl 0689.17016
[3] DOI: 10.1088/1126-6708/1999/12/011 · Zbl 0958.81092
[4] DOI: 10.1016/0370-2693(85)91616-8
[5] Kim J. E., Phys. Rev. 62 pp 045013– (2000)
[6] DOI: 10.1016/S0550-3213(02)00075-5 · Zbl 0992.83038
[7] Bekenstein J. D., Phys. Rev. 23 pp 287– (1981)
[8] DOI: 10.1016/S0370-2693(01)00237-4 · Zbl 0977.83106
[9] DOI: 10.1142/S0217732301004418 · Zbl 1138.83391
[10] DOI: 10.1103/PhysRevLett.83.3370 · Zbl 0946.81063
[11] DOI: 10.4310/ATMP.1998.v2.n3.a3 · Zbl 1057.81550
[12] DOI: 10.1016/S0370-2693(01)00467-1 · Zbl 0977.83114
[13] DOI: 10.1142/S0217751X01005584 · Zbl 0995.83039
[14] DOI: 10.1142/S0217732302006084 · Zbl 1083.83550
[15] DOI: 10.1016/0370-2693(86)90681-7
[16] DOI: 10.1088/1126-6708/2001/01/001
[17] DOI: 10.1088/1126-6708/2001/03/046
[18] DOI: 10.1088/1126-6708/2001/12/033
[19] DOI: 10.1088/0264-9381/18/23/316 · Zbl 0993.83044
[20] Nojiri S., Phys. Rev. 62 pp 064006– (2000)
[21] Hawking S. W., Phys. Rev. 62 pp 043501– (2000)
[22] DOI: 10.1016/0370-2693(80)90670-X · Zbl 1371.83222
[23] Hawking S. W., Phys. Rev. 63 pp 083504– (2001)
[24] DOI: 10.4310/ATMP.1998.v2.n2.a1 · Zbl 0914.53047
[25] DOI: 10.4310/ATMP.1998.v2.n2.a2 · Zbl 0914.53048
[26] DOI: 10.1016/S0370-2693(98)00377-3 · Zbl 1355.81126
[27] DOI: 10.1016/S0370-1573(99)00083-6 · Zbl 1368.81009
[28] Gubser S., Phys. Rev. 54 pp 3915– (1996)
[29] DOI: 10.1016/S0550-3213(98)00514-8 · Zbl 1078.81563
[30] DOI: 10.1016/S0370-2693(98)01030-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.