Nishimoto, Katsuyuki; Yen, Chen-E.; Lin, Ming-Lai Some integral forms for a generalized zeta function. (English) Zbl 1018.11043 J. Fractional Calc. 22, 91-97 (2002). Summary: In this paper some integral forms for a generalized zeta-function are reported. One of them is shown as follows, \[ \zeta(z;a)= \frac{1}{\Gamma(z)} \sum_{k=0}^\infty \int_0^\infty \frac {t^{z-1} e^{-\{a+(1/2)(k+1)k\}t}(1-e^{-(k+1)t})} {1-e^{-t}} dt, \] where \[ \zeta(z;a)= \sum_{m=0}^\infty \frac{1} {(a+m)^z} \qquad (\operatorname{Re} z> 1). \] Cited in 1 ReviewCited in 3 Documents MSC: 11M35 Hurwitz and Lerch zeta functions 26A33 Fractional derivatives and integrals Keywords:integral representations; generalized zeta-function PDF BibTeX XML Cite \textit{K. Nishimoto} et al., J. Fractional Calc. 22, 91--97 (2002; Zbl 1018.11043) OpenURL