×

Rings in which certain right ideals are direct summands of annihilators. (English) Zbl 1020.16003

A ring \(R\) is called left AGP-injective when, for any \(0\neq a\in R\), there exists \(n>0\) such that \(a^n\neq 0\) and \(a^nR\) is a direct summand of a right annihilator ideal (these rings generalize left principally injective rings, which are the rings such that each principal right ideal is a right annihilator). The author studies properties of these rings and, among other results, shows that every left AGP-injective ring with ACC on left annihilators is semiprimary. Moreover, if \(R\) is a right Noetherian left AGP-injective ring such that every right ideal of \(R\) which is isomorphic to \(R_R\) is a direct summand of \(R_R\), then \(R\) is right Artinian.

MSC:

16D50 Injective modules, self-injective associative rings
16P60 Chain conditions on annihilators and summands: Goldie-type conditions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1080/00927870008841085 · Zbl 0951.16001
[2] DOI: 10.1080/00927877508822043 · Zbl 0298.16015
[3] Faith, Nagoya Math. J. 27 pp 179– (1966) · Zbl 0154.03001
[4] DOI: 10.1080/00927878608823362 · Zbl 0596.16015
[5] DOI: 10.1080/00927879908826552 · Zbl 0923.16001
[6] Chen, Algebra Colloq. 8 pp 267– (2001)
[7] DOI: 10.1007/BF02761306 · Zbl 0802.16010
[8] Camillo, Canad. Math. Bull. 34 pp 462– (1991) · Zbl 0767.16004
[9] Camillo, Portugal. Math. 46 pp 33– (1989)
[10] Björk, J. Reine Angew. Math. 245 pp 63– (1970)
[11] DOI: 10.1016/0021-8693(87)90024-X · Zbl 0607.16017
[12] DOI: 10.1016/0021-8693(66)90028-7 · Zbl 0171.29303
[13] DOI: 10.1006/jabr.1996.6796 · Zbl 0879.16002
[14] Puninski, Glasgow Math. J. 37 pp 373– (1995)
[15] DOI: 10.1006/jabr.1995.1117 · Zbl 0839.16004
[16] DOI: 10.1080/00927879508825532 · Zbl 0839.16005
[17] DOI: 10.1080/00927879508825543 · Zbl 0840.16006
[18] DOI: 10.1016/0021-8693(74)90195-1 · Zbl 0284.16010
[19] Goodearl, Von Neumann regular rings (1979)
[20] Pardo, Abelian groups, module theory, and topology (Padua, 1997) 201 pp 261– (1998)
[21] DOI: 10.2307/2160221 · Zbl 0803.16017
[22] DOI: 10.2307/2159289 · Zbl 0762.16011
[23] Yue Chi Ming, J. Math. Kyoto Univ. 27 pp 439– (1987)
[24] DOI: 10.1080/00927879708826086 · Zbl 0911.16002
[25] Xue, Riv. Mat. Univ. Parma 1 pp 31– (1998)
[26] DOI: 10.1006/jabr.1998.7403 · Zbl 0923.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.