×

A reliable treatment for mixed Volterra-Fredholm integral equations. (English) Zbl 1023.65142

Summary: The main goal of this paper is to demonstrate the use of the modified decomposition method for mixed nonlinear Volterra-Fredholm integral equations. The modified method combined with the noise terms phenomena may provide the exact solution by using two iterations only. Two numerical illustrations are given to show the pertinent features of the technique.

MSC:

65R20 Numerical methods for integral equations
45G10 Other nonlinear integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Dickman, O., Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6, 109 (1978) · Zbl 0415.92020
[2] Pachpatte, B. G., On mixed Volterra-Fredholm type integral equations, Ind. J. Pure Appl. Math., 17, 488 (1986) · Zbl 0597.45012
[3] Hacia, L., On approximate solution for integral equations of mixed type, ZAMM. Z. Angew. Math. Mech., 76, 415 (1996) · Zbl 0900.65389
[4] Kauthen, P. J., Continuous time collocation methods for Volterra-Fredholm integral equations, Numer. Math., 56, 409 (1989) · Zbl 0662.65116
[5] Thieme, H. R., A model for the spatio spread of an epidemic, J. Math. Biol., 4, 337 (1977) · Zbl 0373.92031
[6] Guoqiang, H.; Liqing, Z., Asymptotic expansion for the trapezoidal Nystrom method of linear Volterra-Fredholm equations, J. Comput. Appl. Math., 51, 3, 339 (1994) · Zbl 0822.65123
[7] Brunner, H., On the numerical solution of nonlinear Volterra-Fredholm integral equation by collocation methods, SIAM J. Numer. Anal., 27, 4, 987 (1990) · Zbl 0702.65104
[8] Guoqiang, H., Asymptotic error expansion for the Nystrom method for a nonlinear Volterra-Fredholm equations, J. Comput. Appl. Math., 59, 49 (1995) · Zbl 0834.65137
[9] Maleknejad, K.; Hadizadeh, M., A new computational method for Volterra-Fredholm integral equations, J. Comput. Math. Appl., 37, 1-8 (1999), (1994) 339 · Zbl 0940.65151
[10] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer: Kluwer Dordrecht · Zbl 0802.65122
[11] Adomian, G., A review of the decomposition method and some recent results for nonlinear equation, Math. Comput. Modelling, 13, 7, 17 (1992) · Zbl 0713.65051
[12] Adomian, G.; Rach, R., Noise terms in decomposition series solution, Comput. Math. Appl., 24, 11, 61 (1992) · Zbl 0777.35018
[13] Cherruault, Y.; Saccomandi, G.; Some, B., New results for convergence of Adomian’s method applied to integral equations, Math. Comput. Modelling, 16, 2, 85 (1992) · Zbl 0756.65083
[15] Wazwaz, A. M., A reliable modification of Adomian’s decomposition method, Appl. Math. Comput., 102, 77 (1999) · Zbl 0928.65083
[16] Wazwaz, A. M., A First Course In Integral Equations (1997), World Scientific: World Scientific Singapore
[17] Wazwaz, A. M., Necessary conditions for the appearance of noise terms in decomposition series, Appl. Math. Comput., 81, 265 (1997) · Zbl 0882.65132
[18] Wazwaz, A. M., A reliable technique for solving the weakly singular second-kind Volterra-type integral equations, Appl. Math. Comput., 80, 287 (1996) · Zbl 0880.65122
[19] Wazwaz, A. M., Analytical approximations and Pade’ approximants for Volterra’s population model, Appl. Math. Comput., 100, 13 (1999) · Zbl 0953.92026
[20] Wazwaz, A. M., The modified decomposition method and Pade’ approximants for solving Thomas-Fermi equation, Appl. Math. Comput., 105, 11 (1999) · Zbl 0956.65064
[21] Wazwaz, A. M., The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model, Appl. Math. Comput., 110, 251 (2000) · Zbl 1023.65109
[22] Wazwaz, A. M., A new algorithm for calaculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111, 53 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.