×

Geometric constructions of iterative functions to solve nonlinear equations. (English) Zbl 1024.65040

Summary: We present the geometrical interpretation of several iterative methods to solve a nonlinear scalar equation. In addition, we also review the extension to general Banach spaces and some computational aspects of these methods.

MSC:

65H05 Numerical computation of solutions to single equations
65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Altman, C, Iterative methods of higher order, Bull. acad. poll. sci. (Sér. sci. math., astr. phys.), IX, 62-68, (1961) · Zbl 0108.11801
[2] S. Amat, S. Busquier, V.F. Candela, F.A. Potra, Convergence of third order iterative methods in Banach spaces, Vol. 16, U.P. Cartagena, 2001, preprint.
[3] Argyros, I.K; Chen, D, Results on the Chebyshev method in Banach spaces, Proyecciones, 12, 2, 119-128, (1993) · Zbl 1082.65536
[4] Candela, V.F; Marquina, A, Recurrence relations for rational cubic methods ithe Halley method, Computing, 44, 169-184, (1990) · Zbl 0701.65043
[5] Candela, V.F; Marquina, A, Recurrence relations for rational cubic methods iithe Chebyshev method, Computing, 45, 355-367, (1990) · Zbl 0714.65061
[6] Chen, D; Argyros, I.K; Qian, Q.S, A note on the Halley method in Banach spaces, Appl. math. comput., 58, 215-224, (1993) · Zbl 0787.65034
[7] J.A. Ezquerro, J.M. Gutiérrez, M.A. Hernández, M.A. Salanova, Resolución de ecuaciones de Riccati algebraicas mediante procesos iterativos de tercer orden, Proceedings of XVI CEDYA—VI CMA, Las Palmas de Gran Canarias, Spain, 1999, pp. 1069-1076 (in Spanish).
[8] Gander, W, On Halley’s iteration method, Amer. math. monthly, 92, 131-134, (1985) · Zbl 0574.65041
[9] Gutiérrez, J.M; Hernández, M.A, A family of chebyshev – halley type methods in Banach spaces, Bull. austral. math. soc., 55, 113-130, (1997) · Zbl 0893.47043
[10] Gutiérrez, J.M; Hernández, M.A, An acceleration of Newton’s methodsuper-Halley method, Appl. math. comput., 117, 223-239, (2001) · Zbl 1023.65051
[11] Gutiérrez, J.M; Hernández, M.A, Calculus of nth roots and third order methods, Nonlinear anal., 47, 2875-2880, (2001) · Zbl 1042.65523
[12] Hernández, M.A, A note on Halley’s method, Numer. math., 59, 3, 273-279, (1991) · Zbl 0712.65035
[13] Martı́nez, J.M, Practical quasi-Newton methods for solving nonlinear systems, J. comput. appl. math., 124, 1-2, 97-121, (2000) · Zbl 0967.65065
[14] Melman, A, Geometry and convergence of Euler’s and Halley’s methods, SIAM rev., 39, 4, 728-735, (1997) · Zbl 0907.65045
[15] Ortega, J.M; Rheinboldt, W.C, Iterative solution of nonlinear equations in several variables, (1970), Academic Press New York · Zbl 0241.65046
[16] Potra, F.A; Pták, V, Nondiscrete induction and iterative processes, Research notes in mathematics, Vol. 103, (1984), Pitman Boston · Zbl 0549.41001
[17] Salehov, G.S, On the convergence of the process of tangent hyperbolas, Dokl. akad. nauk SSSR, 82, 525-528, (1952), (in Russian)
[18] Scavo, T.R; Thoo, J.B, On the geometry of Halley’s method, Amer. math. monthly, 102, 417-426, (1995) · Zbl 0830.01005
[19] Traub, J.F, Iterative methods for solution of equations, (1964), Prentice-Hall Englewood Cliffs, NJ · Zbl 0121.11204
[20] Werner, W, Newton-like methods for the computation of fixed points, Comput. math. appl., 10, 1, 77-86, (1984) · Zbl 0538.65035
[21] Yamamoto, T, On the method of tangent hyperbolas in Banach spaces, J. comput. appl. math., 21, 75-86, (1988) · Zbl 0632.65070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.