Bursztyn, Henrique; Radko, Olga Gauge equivalence of Dirac structures and symplectic groupoids. (English) Zbl 1026.58019 Ann. Inst. Fourier 53, No. 1, 309-337 (2003). Dirac structures were introduced by T. Courant and A. Weinstein in [Actions hamiltoniennes de groupes. Troisième théorème de Lie, Sémin. Sud-Rhodan. Géom. VIII, Lyon/France 1986, Trav. Cours 27, 39-49 (1988; Zbl 0698.58020)] to provide a geometric framework for the study of constrained mechanical systems. Examples of Dirac structures on a manifold include pre-symplectic forms, Poisson structures and foliations. The authors extend the notion of a symplectic dual pair (defined by A. Weinstein in [J. Differ. Geom. 18, 523-557 (1983; Zbl 0524.58011)] to a more general notion that they call a pre-symplectic pre-dual pair. This generalization consists in the substitution of the symplectic manifold in the dual pair by a pre-symplectic manifold in the pre-dual pair, Poisson manifolds by Dirac manifolds and Poisson manifolds with symplectically orthogonal fibres by Dirac maps verifying a more general condition that includes the kernel of the pre-symplectic form.Then, the main results of the paper are: 1. Ordinary symplectic dual pairs are obtained as quotient of pre-duals pairs (under natural regularity conditions).2. Two integrable gauge-equivalent Poisson structures are Morita equivalent (notion defined by P. Xu in Commun. Math. Phys. 142, 493-509 (1991; Zbl 0746.58034), i.e., they form part of a symplectic dual pair verifying some conditions of connectedness on the fibres. An example proves that the converse is not true.3. A sufficient condition for Morita equivalence of Poisson structures vanishing nearly on a finite number of smooth disjoint curves on a compact connected oriented surface. Reviewer: E.Outerelo (Madrid) Cited in 1 ReviewCited in 39 Documents MSC: 58H05 Pseudogroups and differentiable groupoids 53D17 Poisson manifolds; Poisson groupoids and algebroids Keywords:Dirac structures; gauge equivalence; Morita equivalence; symplectic groupoids Citations:Zbl 0698.58020; Zbl 0524.58011; Zbl 0746.58034 PDF BibTeX XML Cite \textit{H. Bursztyn} and \textit{O. Radko}, Ann. Inst. Fourier 53, No. 1, 309--337 (2003; Zbl 1026.58019) Full Text: DOI arXiv Numdam EuDML OpenURL References: [1] Deformation theory and quantization, Ann. Phys, 111, 61-151, (1978) · Zbl 0377.53024 [2] A geometric setting for Hamiltonian perturbation theory, Mem. Amer. Math. Soc, 153, 727, (2001) · Zbl 1003.70002 [3] A differential complex for Poisson manifolds, J. Differential Geom, 28, 1, 93-114, (1988) · Zbl 0634.58029 [4] Semiclassical geometry of quantum line bundles and Morita equivalence of star products, Int. Math. Res. Notices, 16, 821-846, (2002) · Zbl 1031.53120 [5] The characteristic classes of Morita equivalent star products on symplectic manifolds, Comm. Math. Physics, 228, 1, 103-121, (2002) · Zbl 1036.53068 [6] Geometric models for noncommutative algebras, (1999), American Mathematical Society, Providence, RI · Zbl 1135.58300 [7] Poisson sigma-models and symplectic groupoids · Zbl 1038.53074 [8] Compact flat Riemannian manifolds. I, Ann. of Math (2), 81, 15-30, (1965) · Zbl 0132.16506 [9] Groupoïdes symplectiques, Vol. 2, 1-62, (1987), Publications du Département de Mathématiques, Univ. Claude-BernardLyon · Zbl 0668.58017 [10] Dirac manifolds, Trans. Amer. Math. Soc, 319, 2, 631-661, (1990) · Zbl 0850.70212 [11] Beyond Poisson structures, Action hamiltoniennes de groupes, Troisième théorème de Lie (Lyon, 1986), 39-49, (1988), Hermann, Paris · Zbl 0698.58020 [12] Differentiable and algebroid cohomology, van Est isomorphisms and characteristic classes · Zbl 1041.58007 [13] Integrability of Lie brackets · Zbl 1037.22003 [14] Le problème général des variables actions-angles, J. Differential Geom, 26, 2, 223-251, (1987) · Zbl 0634.58003 [15] Groupoïdes d’holonomie de feuilletages singuliers, C. R. Acad. Sci. Paris, Sér. I Math, 330, 5, 361-364, (2000) · Zbl 0948.57022 [16] Grothendieck Groups of Poisson Vector Bundles · Zbl 1032.53072 [17] Poisson cohomology of Morita-equivalent Poisson manifolds, Internat. Math. Res. Notices, 10, 199-205, (1992) · Zbl 0783.58026 [18] Closed forms on symplectic fibre bundles, Comment. Math. Helv, 58, 4, 617-621, (1983) · Zbl 0536.53040 [19] Sphere bundles over spheres and non-cancellation phenomena, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971), Vol. 249, 34-46, (1971), Springer, Berlin · Zbl 0227.55016 [20] Noncommutative line bundle and Morita equivalence · Zbl 1036.53070 [21] Symplectic geometry and mirror symmetry (Seoul, 2000), 311-384, (2001), World Sci. Publishing, NJ [22] Deformation Quantization of Poisson Manifolds, I [23] Quantization as a functor · Zbl 1034.46065 [24] Topological open p-branes, J. Geom. Phys, 43, 4, 341-344, (2002) [25] A classification of topologically stable Poisson structures on a compact oriented surface · Zbl 1093.53087 [26] Poisson cohomology of \(SU(2)\)-covariant “Necklace” Poisson structures on \(S^2,\) J. Nonlinear Math. Physics, 9, 3, 347-356, (2002) · Zbl 1032.53073 [27] Poisson geometry with a 3-form background, (2001) · Zbl 1029.53090 [28] The symplectic “Category”, Differential geometric methods in mathematical physics (Clausthal, 1980), 45-51, (1982), Springer, Berlin · Zbl 0486.58017 [29] The local structure of Poisson manifolds, J. Differential Geom, 18, 3, 523-557, (1983) · Zbl 0524.58011 [30] Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.), 16, 1, 101-104, (1987) · Zbl 0618.58020 [31] Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40, 4, 705-727, (1988) · Zbl 0642.58025 [32] The modular automorphism group of a Poisson manifold, J. Geom. Phys, 23, 3-4, 379-394, (1997) · Zbl 0902.58013 [33] Morita equivalence of Poisson manifolds, Comm. Math. Phys, 142, 3, 493-509, (1991) · Zbl 0746.58034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.