Ito, Kazufumi; Kunisch, Karl Semi-smooth Newton methods for variational inequalities of the first kinds. (English) Zbl 1027.49007 M2AN, Math. Model. Numer. Anal. 37, No. 1, 41-62 (2003). Summary: Semi-smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an \(L^{\infty }\) estimate for the penalized solutions. Unilateral as well as bilateral problems are considered. Cited in 54 Documents MSC: 49J40 Variational inequalities 65K10 Numerical optimization and variational techniques 90C53 Methods of quasi-Newton type Keywords:semi-smooth Newton methods; contact problems; variational inequalities; bilateral constraints; superlinear convergence PDF BibTeX XML Cite \textit{K. Ito} and \textit{K. Kunisch}, M2AN, Math. Model. Numer. Anal. 37, No. 1, 41--62 (2003; Zbl 1027.49007) Full Text: DOI Numdam EuDML References: [1] D.P. Bertsekas , Constrained Optimization and Lagrange Mulitpliers . Academic Press, New York ( 1982 ). MR 690767 · Zbl 0572.90067 [2] M. Bergounioux , M. Haddou , M. Hintermüller and K. Kunisch , A comparison of a Moreau-Yosida based active strategy and interior point methods for constrained optimal control problems . SIAM J. Optim. 11 ( 2000 ) 495 - 521 . Zbl 1001.49034 · Zbl 1001.49034 [3] M. Bergounioux , K. Ito and K. Kunisch , Primal-dual strategy for constrained optimal control problems . SIAM J. Control Optim. 37 ( 1999 ) 1176 - 1194 . Zbl 0937.49017 · Zbl 0937.49017 [4] Z. Dostal , Box constrained quadratic programming with proportioning and projections . SIAM J. Optim. 7 ( 1997 ) 871 - 887 . Zbl 0912.65052 · Zbl 0912.65052 [5] R. Glowinski , Numerical Methods for Nonlinear Variational Problems . Springer Verlag, New York ( 1984 ). MR 737005 | Zbl 0536.65054 · Zbl 0536.65054 [6] R. Glowinski , J.L. Lions and T. Tremolieres , Analyse Numerique des Inequations Variationnelles . Vol. 1, Dunod, Paris ( 1976 ). Zbl 0358.65091 · Zbl 0358.65091 [7] M. Hintermüller , K. Ito and K. Kunisch , The primal-dual active set strategy as semi-smooth Newton method . SIAM J. Optim. (to appear). Zbl 1080.90074 · Zbl 1080.90074 [8] R. Hoppe , Multigrid algorithms for variational inequalities . SIAM J. Numer. Anal. 24 ( 1987 ) 1046 - 1065 . Zbl 0628.65046 · Zbl 0628.65046 [9] R. Hoppe and R. Kornhuber , Adaptive multigrid methods for obstacle problems . SIAM J. Numer. Anal. 31 ( 1994 ) 301 - 323 . Zbl 0806.65064 · Zbl 0806.65064 [10] K. Ito and K. Kunisch , Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces . Nonlinear Anal. 41 ( 2000 ) 573 - 589 . Zbl 0971.49014 · Zbl 0971.49014 [11] K. Ito and K. Kunisch , Optimal control of elliptic variational inequalities . Appl. Math. Optim. 41 ( 2000 ) 343 - 364 . Zbl 0960.49003 · Zbl 0960.49003 [12] D. Kinderlehrer and G. Stampacchia , An Introduction to Variational Inequalities and Their Applications . Academic Press, New York ( 1980 ). MR 567696 | Zbl 0457.35001 · Zbl 0457.35001 [13] D.M. Troianello , Elliptic Differential Equations and Obstacle Problems . Plenum Press, New York ( 1987 ). Zbl 0655.35002 · Zbl 0655.35002 [14] M. Ulbrich , Semi-smooth Newton methods for operator equations in function space . SIAM J. Optim. (to appear). Zbl 1033.49039 · Zbl 1033.49039 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.