×

Limiting domain wall energy for a problem related to micromagnetics. (English) Zbl 1031.35142

This paper concerns the asymptotic limit of a family of functionals related to the theory of micromagnetics in two dimensions. A compactness result for families of uniformly bounded energy is proved. The authors prove that the minimal wall energy is twice the perimeter.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
82D40 Statistical mechanics of magnetic materials
35A15 Variational methods applied to PDEs
35J35 Variational methods for higher-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ambrosio, Calc Var Partial Differential Equations 9 pp 327– (1999) · Zbl 0960.49013
[2] ; A mathematical problem related to the physical theory of liquid crystal configurations. Miniconference on geometry and partial differential equations, 2 (Canberra, 1986), 1-16. Proc Centre Math Anal Austral Nat Univ, 12. Australian National University, Canberra, 1987.
[3] Aviles, Proc Roy Soc Edinburgh Sect A 129 pp 1– (1999) · Zbl 0923.49008
[4] ; ; Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and Their Applications, 13. Birkhäuser, Boston, 1994.
[5] Bethuel, J Funct Anal 80 pp 60– (1988) · Zbl 0657.46027
[6] Inversion de systèmes linéaires pour la simulation des matériaux ferromagnétiques. Singularités d’une configuration d’aimantation. Doctoral dissertation, Université Joseph Fourier, Grenoble, 1996.
[7] ; Differential forms in algebraic topology. Graduate Texts in Mathematics, 82. Springer, New York-Berlin, 1982. · Zbl 0496.55001
[8] Carbou, C R Acad Sci Paris Sér I Math 314 pp 359– (1992)
[9] Carbou, Calc Var Partial Differential Equations 5 pp 409– (1997) · Zbl 0889.58022
[10] Choi, Pacific J Math 181 pp 57– (1997) · Zbl 0885.53004
[11] ; ; ; Magnetic microstructures, a paradigm of multiscale problems. Preprint, 1999.
[12] DeSimone, Proc Roy Soc Edinburgh, Sec A
[13] Hardt, Comm Partial Differential Equations 25 pp 1235– (2000) · Zbl 0958.35136
[14] ; Magnetic domains: the analysis of magnetic microstructures. Springer, Berlin-New York, 1998.
[15] Jabin, C R Acad Sci Paris Sér I Math 331 pp 441– (2000) · Zbl 0965.35159
[16] ; Compactness in Ginzburg-Landau energy by kinetic averaging. To appear. · Zbl 1124.35312
[17] James, Contin Mech Thermodyn 2 pp 215– (1990)
[18] Jin, J Nonlinear Sci 10 pp 355– (2000) · Zbl 0973.49009
[19] Murat, Ann Scuola Norm Sup Pisa Cl Sci (4) 5 pp 489– (1978)
[20] Murat, J Math Pures Appl (9) 60 pp 309– (1981)
[21] Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, 136-212. Res Notes in Math, 39. Pitman, Boston-London, 1979.
[22] van den Berg, J Appl Phys 60 pp 1104– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.