An efficient parallel algorithm with application to computational fluid dynamics. (English) Zbl 1035.65096

Summary: When solving time-dependent partial differential equations on parallel computers using the nonoverlapping domain decomposition method, one often needs numerical boundary conditions on the boundaries between subdomains. These numerical boundary conditions can significantly affect the stability and accuracy of the final algorithm.
In this paper, a stability and accuracy analysis of the existing methods for generating numerical boundary conditions will be presented, and a new approach based on explicit predictors and implicit correctors will be used to solve convection-diffusion equations on parallel computers, with application to aerospace engineering for the solution of Euler equations in computational fluid dynamics simulations. Both theoretical analyses and numerical results demonstrate significant improvement in stability and accuracy by using the new approach.


65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)
76M20 Finite difference methods applied to problems in fluid mechanics
35K15 Initial value problems for second-order parabolic equations
65Y05 Parallel numerical computation


Full Text: DOI


[1] Dongarra, J.; Duff, I. S.; Sorensen, D. C.; Van der Vorst, H. A., Numerical Linear Algebra for High-Performance Computers (1998), SIAM: SIAM Philadelphia, PA · Zbl 0914.65014
[2] Sun, X. H., Application and accuracy of the parallel diagonal dominant algorithm, Parallel Computing, 21, 1241-1268 (1995) · Zbl 0873.65016
[3] Golub, G.; Ortega, J. M., Scientific Computing, An Introduction with Parallel Computing (1993), Academic Press: Academic Press San Diego, CA · Zbl 0790.65001
[4] Povitsky, A.; Morris, P. J., A parallel compact multi-dimensional numerical algorithm with aeroacoustics application, ICASE Report 99-34 (1999)
[5] Chan, T. F.; Mathew, T. P., Domain decomposition algorithms, Acta Numerica, 3, 61-143 (1994) · Zbl 0809.65112
[6] Lions, P. L., On the Schwartz alternating method I, (Glowinski, R.; Golub, G. H.; Meurant, G. A.; Périaux, J., First International Symposium on Domain Decomposition Methods for Partial Differential Equations (1988), SIAM: SIAM Philadelphia, PA), 1-42 · Zbl 0658.65090
[7] Schwartz, H. W., Gesammelte Mathematische Abhandlungen, 2, 133-143 (1890)
[8] Barrett, R.; Berry, M.; Chan, T.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1994), SIAM: SIAM Philadelphia, PA
[9] Brakkee, E.; Segal, A.; Kassels, C. G.M., A parallel domain decomposition algorithm for the incompressible Navier-Stokes equations, Simulation Practice and Theory, 3, 185-205 (1995)
[10] Drikakis, D.; Schreck, E., Development of parallel implicit Navier-Stokes solvers on MIMD multi-processor systems, AIAA paper 93-0062 (1993)
[11] Heise, B., Nonlinear simulation of electromagnetic fields with domain decomposition methods on MIMD parallel computers, Journal of Computational and Applied Mathematics, 63, 373-381 (1995) · Zbl 0861.65108
[12] Lu, Y.; Shen, C. Y., A domain decomposition finite-difference method for parallel numerical implementation of time-dependent Maxwell’s equations, IEEE Transactions on Antennas and Propagation, 45, 1261 (1997)
[13] Oh, S.; Paik, S.; Nguyen, H. D., Domain decomposition method for heat transfer problem using parallel distributed computing, Journal of Scientific Computing, 12, 187-204 (1997) · Zbl 0898.65052
[14] Barnard, S.; Saini, S.; Van der Wijngaart, R.; Yarrow, M.; Zechtzer, L.; Foster, I.; Larsson, O., Large-scale distributed computational fluid dynamics on the information power grid using Globus, (Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Computation (1999))
[15] Pankajakshan, R.; Briley, W. R., Parallel solution of viscous incompressible flow on multi-block structured grids using MPI, (Ecer, A.; Periaux, J.; Satofuka, N.; Taylor, S., Parallel Computational Fluid Dynamics: Implementation and Results Using Parallel Computers (1996), Elsevier Science: Elsevier Science Amsterdam), 601-608
[16] Dawson, C. N.; Du, Q.; Dupont, T. F., A finite difference domain decomposition algorithm for numerical solution of the heat equations, Mathematics of Computation, 57, 63-71 (1991) · Zbl 0732.65091
[17] Kuznetsov, Y. A., New algorithms for approximate realization of implicit difference schemes, Sovietic Journal of Numerical Analysis and Mathematical Modeling, 3, 99-114 (1988) · Zbl 0825.65066
[18] Qian, H.; Zhu, J., On an efficient parallel algorithm for solving time dependent partial differential equations, (Arabnia, H. R., Proceedings of the 1998 International Conference on Parallel and Distributed Processing Technology and Applications (1998), CSREA Press: CSREA Press Athens, GA), 394-401
[19] Thomas, J. W., Numerical Partial Differential Equations: Finite Difference Methods (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0831.65087
[20] Hirsch, C., (Numerical Computation of Internal and External Flows, Volume I (1988), John Wiley and Sons: John Wiley and Sons New York) · Zbl 0662.76001
[21] Gustafsson, B., The convergence rate for difference approximations to mixed initial boundary value problems, Mathematics of Computation, 29, 396-406 (1975) · Zbl 0313.65085
[22] Gropp, W.; Snir, M.; Nitzberg, B.; Lusk, E., MPI: The Complete Reference (1998), MIT Press: MIT Press Cambridge
[23] Roe, P. L., Approximate Riemann solvers, parameter vector, and difference schemes, Journal of Computational Physics, 43, 357-372 (1981) · Zbl 0474.65066
[24] MacCormack, R. W., The effects of viscosity in hypervelocity impact cratering, AIAA paper 69-354 (1969)
[25] Whitfield, D. L.; Janus, J. M.; Simpson, L. B., Implicit finite volume high resolution wave split scheme for solving the unsteady three-dimensional Euler and Navier-Stokes equations on stationary or dynamic grids, (Engineering and Industrial Research Report, MSSU-EIRS-ASE-88-2 (1988), Mississippi State University)
[26] Viviand, H., Numerical solutions of two-dimensional reference test cases, (Test Cases for Inviscid Flow Field Methods. Test Cases for Inviscid Flow Field Methods, Advisory Report 211 (1985), AGARD) · Zbl 0485.76044
[27] Belk, D. M., Three-dimensional Euler equations solutions on dynamic blocked grids, (Ph.D. Thesis (1986), Mississippi State University)
[28] Landon, R. H., NACA0012 oscillation and transient pitching, (Compendium of Unsteady Aerodynamic Measurements. Compendium of Unsteady Aerodynamic Measurements, Advisory Report 702 (1982), AGARD)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.