×

A debate about the axiomatization of arithmetic: Otto Hölder against Robert Graßmann. (English) Zbl 1039.01007

The author states as the aim of this paper “to reconstruct and examine the significance of Hölder’s arguments against the axiomatization of arithmetic” (p.345) based in particular on Otto Hölder’s 1892 review of Robert Graßmann’s book “Die Zahlenlehre oder Arithmetik” [Verlag von R. Graßmann, Stettin (1891), see also JFM 23.0158.01]. For this purpose Graßmann’s formal approach to arithmetic is sketched as developed together with his brother Hermann Günther Graßmann and based on a general theory of forms. The structure of mathematics (Formenlehre) with its most general discipline, the theory of magnitudes (Größenlehre), is given by the laws governing the abstract binary algebraic operations in the different mathematical disciplines.
In his review, Hölder, following a Kantian line of thought, is most interested in questions of mathematical ontology, in particular the existence of arithmetical objects. He gives two interpretations of Graßmann’s approach, an analytic and a synthetic one, especially stressing the weaknesses of the analytic side. Against Graßmann’s preference for the formal side of mathematics, “Hölder defended the intuitionist position according to which the foundation of pure mathematics is represented by the faculty of the mind of constructing infinite sequences whose mathematical description can be found in arithmetic, and, as a result, he refused to reduce mathematical existence to consistency” (p.376).

MSC:

01A55 History of mathematics in the 19th century
01A72 Schools of mathematics
03-03 History of mathematical logic and foundations

Citations:

JFM 23.0158.01
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beth, E. W., Poincaré et la philosophie, (Petiau, G., Œuvres de Henri Poincaré, Tome XI (1956), Gauthier-Villars: Gauthier-Villars Paris), 225-238
[2] Biermann, K.-R., Die Mathematik und ihre Dozenten an der Berliner Universität 1810-192 (1973), Akademie-Verlag: Akademie-Verlag Berlin
[3] du Bois-Reymond, P., Die allgemeine Functionentheorie (1968), Wissenschaftliche Buchgesellschaft: Wissenschaftliche Buchgesellschaft Darmstadt · JFM 14.0309.01
[4] Dieudonné, J., Mathematics—The Music of Reason (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0753.00012
[5] Frege, G., (Gabriel, G.; etal., Wissenschaftlicher Briefwechsel (1976), Meiner: Meiner Hamburg) · Zbl 0341.01019
[6] Gonseth, F., Les Mathématiques et la réalité—Essai sur la méthode axiomatique (1974), Blanchard: Blanchard Paris · Zbl 0285.00014
[7] Graßmann, H., Die Ausdehnungslehre, (Engel, Friedrich, Gesammelte mathematische und physikalische Werke, Vol. I.1 (1894), Teubner: Teubner Leipzig) · JFM 11.0605.03
[8] Graßmann, H., Lehrbuch der Arithmetik (1861), Verlag von R. Graßmann: Verlag von R. Graßmann Berlin
[9] Graßmann, J., Ueber Begriff und Umfang der reinen Zahlenlehre (1827), Beilage zu dem Programm für Michaelis 1827 bei dem Gymnasium zu Stettin: Beilage zu dem Programm für Michaelis 1827 bei dem Gymnasium zu Stettin Stettin
[10] Graßmann, R., Die Formenlehre oder Mathematik (1872), Georg Olms Verlagsbuchhandlung: Georg Olms Verlagsbuchhandlung Hildesheim
[11] Graßmann, R., Die Zahlenlehre oder Arithmetik—streng wissenschaftlich in strenger Formelentwicklung (1891), Verlag von R. Graßmann: Verlag von R. Graßmann Stettin · JFM 23.0158.01
[12] Haack, S., Peirce and logicism: notes towards an exposition, Trans. Charles S. Peirce Soc., 29, 1, 33-67 (1993)
[13] von Helmholtz, H., Zählen und Messen erkenntnistheoretisch betrachtet (1959), Wissenschaftliche Buchgesellschaft: Wissenschaftliche Buchgesellschaft Darmstadt
[14] Hintikka, J.; Gruender, D.; Agazzi, E., (Theory Change, Ancient Axiomatics, and Galileo’s Methodology. Theory Change, Ancient Axiomatics, and Galileo’s Methodology, Proceedings of the 1978 Pisa Conference on the History and Philosophy of Science, Vol. 1 (1981), Reidel: Reidel Dordrecht) · Zbl 1067.01500
[15] Hintikka, J., Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century Philosophy (1997), Kluwer: Kluwer Dordrecht
[16] Hölder, E., Entry: Hölder, Otto Ludwig, (Gillispie, Ch. C., Dictionary of Scientific Biography, VI (1972), Charles Scribner’s Sons: Charles Scribner’s Sons New York), 472-474
[17] Hölder, O., R. Graßmann, Die Zahlenlehre oder Arithmetik, Göttingische gelehrte Anzeigen, 15, 585-595 (1892)
[18] Hölder, O., Die Axiome der Quantität und die Lehre vom Maß, Ber. Verhandl. Königl. Sächs. Ges. Wissensch. Leipzig Math. Phys. Klasse, 53, 1-64 (1901) · JFM 32.0079.01
[19] Hölder, O., Anschauung und Denken in der Geometrie (1968), Teubner: Teubner Stuttgart · JFM 31.0467.01
[20] Hölder, O., Die Arithmetik in strenger Begründung (1929), Springer-Verlag: Springer-Verlag Berlin · JFM 55.0661.01
[21] Hölder, O., Die mathematische Methode (1924), Springer-Verlag: Springer-Verlag Berlin · JFM 50.0022.04
[22] Hölder, O., Der angebliche circulus vitiosus und die sogenannte Grundlagenkrise in der Analysis, Ber. Verhandl. Sächs. Akad. Wissensch. Leipzig, Math. Phys. Klasse, 78, 243-250 (1926) · JFM 52.0052.08
[23] Houser, N.; Roberts, D. D.; van Evra, J., Studies in the Logic of Charles Sanders Peirce (1997), Indiana Univ. Press: Indiana Univ. Press Bloomington
[24] Kant, I., Kritik der reinen Vernunft, (Kants Werke, Akademie-Textausgebe. Abdruck des Textes d. von der Preussischen Akademie der Wissenschaften 1902 begonnenen Ausg. von Kants gesammelten Schriften, CD-ROM Auflage: Kant im \(Kontext^{plus}\), Werke auf CD-ROM, 2te Aufl (1923), Karsten Worm InfoSoftWare: Karsten Worm InfoSoftWare Berlin), 1997
[25] Kant, I., (Zehbe, J., Briefe (1970), Vandenhoeck & Ruprecht: Vandenhoeck & Ruprecht Göttingen)
[26] Lewis, A. C., H. Graßmann’s 1844 Ausdehnungslehre and Schleiermacher’s Dialektik, Ann. Sci., 34, 103-162 (1977) · Zbl 0355.01011
[27] Lewis, A. C., Justus Graßmann’s school programs as mathematical antecedents of Hermann Graßmann’s 1844 ‘Ausdehnungslehre.’, (Merthens, H.; Bos, H.; Schneider, I., Social History of Nineteenth Century Mathematics (1981), Birkhäuser: Birkhäuser Boston), 255-268
[28] Michell, J., The origin of the representational theory of measurement: Helmholtz, Hölder, and Russell, Stud. Hist. Philos. Sci., 24, 2, 185-206 (1993)
[29] Nicholson, J., 1993. Otto Hölder and the development of group theory and Galois theory, Ph.D. thesis, Merton College, Oxford; Nicholson, J., 1993. Otto Hölder and the development of group theory and Galois theory, Ph.D. thesis, Merton College, Oxford
[30] Otte, M., Arithmetic and geometry: some remarks on the concept of complementarity, Stud. Philos. Ed., 10, 37-62 (1990)
[31] Burks, A.W. (Ed.), Vols. 7-8, Harvard Univ. Press, Cambridge, MA; Burks, A.W. (Ed.), Vols. 7-8, Harvard Univ. Press, Cambridge, MA
[32] Poincaré, H., Sur la nature du raisonnement mathématique, Rev. Métaphys. Morale, 2, 371-384 (1894) · JFM 27.0048.06
[33] Pont, J.-C., 1997. The Euclidean and the axiomatic method. Conference held at the international congress “Histoire et philosophie de l”axiomatique,” Zinal (Switzerland). Manuscript; Pont, J.-C., 1997. The Euclidean and the axiomatic method. Conference held at the international congress “Histoire et philosophie de l”axiomatique,” Zinal (Switzerland). Manuscript
[34] Radu, M., 1998a. Justus Graßmann’s account of synthesis in mathematics: between Kant and Schelling. Conference held at the International Congress of Mathematicians, Berlin; Radu, M., 1998a. Justus Graßmann’s account of synthesis in mathematics: between Kant and Schelling. Conference held at the International Congress of Mathematicians, Berlin
[35] Radu, M., 1998b. The concept of construction in Justus Graßmann’s mathematical writings: Between Kant and Schelling, Arbeiten aus dem Institut für Didaktik der Mathematik der Universität Bielefeld. Occasional Paper 172, IDM Bielefeld; Radu, M., 1998b. The concept of construction in Justus Graßmann’s mathematical writings: Between Kant and Schelling, Arbeiten aus dem Institut für Didaktik der Mathematik der Universität Bielefeld. Occasional Paper 172, IDM Bielefeld
[36] Radu, M., Justus Graßmann’s contributions to the foundations of mathematics: mathematical and philosophical aspects, Hist. Math., 27, 4-35 (2000) · Zbl 0948.01009
[37] Schröder, E., Lehrbuch der Arithmetik und Algebra (1873), Teubner: Teubner Leipzig · JFM 05.0605.01
[38] Schubring, G., Hermann Günther Graßmann (1809-1877) Visionary Mathematician, Scientist and Neohumanist Scholar (1996), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0853.00027
[39] Segre, M., Peano’s axioms in their historical context, Arch. Hist. Exact Sci., 48, 202-342 (1994) · Zbl 0835.01006
[40] Stolz, O., Vorlesungen über allgemeine Arithmetik (1885), Teubner: Teubner Leipzig · JFM 17.0116.01
[41] Veronese, G., Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten gradliniger Einheiten in elementarer Form entwickelt (1894), Teubner: Teubner Leipzig · JFM 25.0871.04
[42] van der Waerden, B. L., Nachruf nach Otto Hölder, Math. Ann., 16, 157-165 (1939) · JFM 64.0919.08
[43] Wang, H., The axiomatisation of arithmetic, J. Symbolic Logic, 22, 2, 145-158 (1957) · Zbl 0078.00503
[44] Wang, H., From Mathematics to Philosophy (1974), Routledge & Keegan Paul: Routledge & Keegan Paul London · Zbl 0554.03002
[45] Webb, J. C., Mechanism, Mentalism, and Metamathematics (1980), Reidel: Reidel Dordrecht · Zbl 0454.03001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.