×

Algebraic Rieffel induction, formal Morita equivalence, and applications to deformation quantization. (English) Zbl 1039.46052

Let \(R\) be an ordered ring and \(C\) its quadratic extension \(C=R+iR\), where \(i^ 2=-1\). The main goal of the extensive work under review is to develop a purely algebraic theory of \(\ast\)-algebras over \(C\) analogous to theory of \(C^\ast\)-algebras. At first the positive elements of a \(\ast\)-algebra \(A\) over \(C\) and positive functionals on \(A\) are studied. The analog of the GNS construction and a purely algebraic version of Rieffel induction is obtained. Formal Morita equivalence of two \(\ast\)-algebras defined by the existence of a bimodule with certain additional structure is investigated. Various examples of finite rank operators on pre-Hilbert spaces and matrix algebras over \(\ast\)-algebras are studied. Finally, the results of the paper are applied to deformation theory and in particular to deformation quantization.

MSC:

46L55 Noncommutative dynamical systems
53D55 Deformation quantization, star products
16D90 Module categories in associative algebras
22D30 Induced representations for locally compact groups
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Abrams, G.D., Morita equivalence for rings with local units, Commun. algebra, 11, 8, 801-837, (1983) · Zbl 0503.16034
[2] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, 2nd Edition, Springer, New York, 1992. · Zbl 0765.16001
[3] Ánh, P.N.; Márki, L., Morita equivalence for rings without identity, Tsukuba J. math., 11, 1, 1-16, (1987) · Zbl 0627.16031
[4] P. Ara, Morita equivalence and pedersen ideals, Proc. Am. Math. Soc., in press. · Zbl 1058.46038
[5] Ara, P., Morita equivalence for rings with involution, Algebr. represent. theory, 2, 3, 227-247, (1999) · Zbl 0944.16005
[6] Banaschewski, B., Functors into categories of M-sets, Abh. math. sem. univ. Hamburg, 38, 49-64, (1972) · Zbl 0257.18011
[7] H. Bass, Algebraic K-theory, Benjamin, New York, 1968.
[8] S. Bates, A. Weinstein, Lectures on the Geometry of Quantization, Berkeley Mathematics Lecture Notes, Vol. 8, Berkeley, CA, 1995. · Zbl 1049.53061
[9] Bayen, F.; Flato, M.; Frønsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization, Ann. phys., 111, 61-151, (1978) · Zbl 0377.53025
[10] Beer, W., On Morita equivalence of nuclear \(C\^{}\{∗\}\)-algebras, J. pure appl. algebra, 26, 3, 249-267, (1982) · Zbl 0528.46042
[11] Bertelson, M.; Cahen, M.; Gutt, S., Equivalence of star products, Class. quantum grav., 14, A93-A107, (1997) · Zbl 0881.58021
[12] Bkouche, R., Idéaux mous d’un anneau commutatif. applications aux anneaux de fonctions, C.R. acad. sci. Paris, 260, 6496-6498, (1965) · Zbl 0142.28901
[13] Bordemann, M.; Brischle, M.; Emmrich, C.; Waldmann, S., Subalgebras with converging star products in deformation quantization: an algebraic construction for \(CP\^{}\{n\}\), J. math. phys., 37, 6311-6323, (1996) · Zbl 0923.58024
[14] Bordemann, M.; Herbig, H.-C.; Waldmann, S., BRST cohomology and phase space reduction in deformation quantisation, Commun. math. phys., 210, 107-144, (2000) · Zbl 0961.53046
[15] M. Bordemann, N. Neumaier, M.J. Pflaum, S. Waldmann, On representations of star product algebras over cotangent spaces on Hermitian line bundles, Preprint Freiburg FR-THEP-98/24 math.QA/9811055, November 1998. · Zbl 1038.53087
[16] Bordemann, M.; Neumaier, N.; Waldmann, S., Homogeneous Fedosov star products on cotangent bundles I: Weyl and standard ordering with differential operator representation, Commun. math. phys., 198, 363-396, (1998) · Zbl 0968.53056
[17] Bordemann, M.; Neumaier, N.; Waldmann, S., Homogeneous Fedosov star products on cotangent bundles II: GNS representations, the WKB expansion, traces, and applications, J. geom. phys., 29, 199-234, (1999) · Zbl 0989.53060
[18] Bordemann, M.; Römer, H.; Waldmann, S., A remark on formal KMS states in deformation quantization, Lett. math. phys., 45, 49-61, (1998) · Zbl 0951.53057
[19] Bordemann, M.; Römer, H.; Waldmann, S., KMS states and star product quantization, Rep. math. phys., 44, 45-52, (1999) · Zbl 0964.81045
[20] M. Bordemann, S. Waldmann, Formal GNS construction and WKB expansion in deformation quantization, in: D. Sternheimer, J. Rawnsley, S. Gutt (Eds.), Deformation Theory and Symplectic Geometry, Mathematical Physics Studies, Vol. 20, Kluwer Academic Publishers, Dordrecht, 1997, pp. 315-319. · Zbl 1166.53321
[21] Bordemann, M.; Waldmann, S., Formal GNS construction and states in deformation quantization, Commun. math. phys., 195, 549-583, (1998) · Zbl 0989.53057
[22] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I: \(C\^{}\{∗\}\)-and \(W\^{}\{∗\}\)-Algebras. Symmetry Groups. Decomposition of States, 2nd Edition, Springer, New York, 1987. · Zbl 0905.46046
[23] H. Bursztyn, S. Waldmann, On positive deformations of \(\^{}\{∗\}\)-algebras, Preprint math.QA/9910112, October 1999, Contribution to the Proceedings of the Conference Moshé Flato 1999 (Talk given by S. Waldmann). · Zbl 0979.53098
[24] Cahen, M.; Gutt, S.; Rawnsley, J., Quantization of Kähler manifolds I: geometric interpretation of berezin’s quantization, J. geom. phys., 7, 45-62, (1990) · Zbl 0719.53044
[25] Cahen, M.; Gutt, S.; Rawnsley, J., Quantization of Kähler manifolds II, Trans. am. math. soc., 337, 1, 73-98, (1993) · Zbl 0788.53062
[26] Cahen, M.; Gutt, S.; Rawnsley, J., Quantization of Kähler manifolds III, Lett. math. phys., 30, 291-305, (1994) · Zbl 0826.53052
[27] Cahen, M.; Gutt, S.; Rawnsley, J., Quantization of Kähler manifolds IV, Lett. math. phys., 34, 159-168, (1995) · Zbl 0831.58026
[28] A. Cannas da Silva, A. Weinstein, Geometric Models for Noncommutative Algebras, Mathematics Lecture Notes, American Mathematical Society, Berkeley, CA, 1999. · Zbl 1135.58300
[29] A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.
[30] Connes, A.; Douglas, M.R.; Schwarz, A., Noncommutative geometry and matrix theory: compactification on tori, J. high energy phys., 2, 3, (1998) · Zbl 1018.81052
[31] Deligne, P., Déformations de l’algèbre des fonctions d’une variété symplectique: comparaison entre Fedosov et dewilde, lecomte, Sel. math. new seri., 1, 4, 667-697, (1995) · Zbl 0852.58033
[32] DeWilde, M.; Lecomte, P.B.A., Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. math. phys., 7, 487-496, (1983) · Zbl 0526.58023
[33] M. DeWilde, P.B.A. Lecomte, Formal deformations of the Poisson Lie algebra of a symplectic manifold and star-products. Existence, equivalence, derivations, in: M. Hazewinkel, M. Gerstenhaber (Eds.), Deformation Theory of Algebras and Structures and Applications, Kluwer Academic Publishers, Dordrecht, 1988, pp. 897-960.
[34] M. Dütsch, K. Fredenhagen, Deformation stability of BRST-quantization, Preprint hep-th/9807215, July 1998.
[35] Dütsch, M.; Fredenhagen, K., A local (perturbative) construction of observables in gauge theories: the example of QED, Commun. math. phys., 203, 71-105, (1999) · Zbl 0938.81028
[36] Emmrich, C.; Römer, H., Multicomponent wentzel – kramers – brillouin approximation on arbitrary symplectic manifolds: a star product approach, J. math. phys., 39, 7, 3530-3546, (1998) · Zbl 0935.81021
[37] Emmrich, C.; Weinstein, A., Geometry of the transport equation in multicomponent WKB approximations, Commun. math. phys., 176, 701-711, (1996) · Zbl 0848.34039
[38] Fedosov, B.V., Quantization and the index, Sov. phys. dokl., 31, 11, 877-878, (1986) · Zbl 0635.58019
[39] Fedosov, B.V., A simple geometrical construction of deformation quantization, J. diff. geom., 40, 213-238, (1994) · Zbl 0812.53034
[40] Fedosov, B.V., Non-abelian reduction in deformation quantization, Lett. math. phys., 43, 137-154, (1998) · Zbl 0964.53055
[41] J.M.G. Fell, A New Look at Mackey’s Imprimitivity Theorem, Lecture Notes in Mathematics, Vol. 266, 1972, pp. 43-58.
[42] M. Gerstenhaber, S.D. Schack, Algebraic cohomology and deformation theory, in: M. Hazewinkel, M. Gerstenhaber (Eds.), Deformation Theory of Algebras and Structures and Applications, Kluwer Academic Publishers, Dordrecht, 1988, pp. 13-264. · Zbl 0676.16022
[43] R. Haag, Local Quantum Physics, 2nd Edition, Springer, Berlin, 1993. · Zbl 0843.46052
[44] H. Bursztyn, S. Waldmann, \(\^{}\{∗\}\)-Ideals and Formal Morita equivalence of \(\^{}\{∗\}\)-Algebras, preprint math. QA/0005227 (May 2000). · Zbl 1111.46303
[45] N. Jacobson, Basic Algebra I, 2nd Edition, Freeman, New York, 1985. · Zbl 0557.16001
[46] I. Kaplansky, Rings of operators, Benjamin, New York, 1968. · Zbl 0174.18503
[47] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations. Texts and Monographs in Physics, Springer, Berlin, 1997.
[48] U. Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3 (4) (1971/1972) 359-370. · Zbl 0231.18013
[49] M. Kontsevich, Deformation quantization of Poisson manifolds I, Preprint q-alg/9709040, September 1997.
[50] T.Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999. · Zbl 0911.16001
[51] N.P. Landsman, Mathematical Topics between Classical and Quantum Mechanics, Springer Monographs in Mathematics, Springer, Berlin, 1998. · Zbl 0923.00008
[52] Lin, B.I.P., Morita’s theorem for coalgebras, Commun. algebra, 1, 311-344, (1974) · Zbl 0285.16021
[53] Mackey, G.W., Induced representations of locally compact groups I, Ann. of math., 55, 2, 101-139, (1952) · Zbl 0046.11601
[54] S. MacLane, Categories for the Working Mathematician, Graduate Texts in Mathematics, Vol. 5, Springer, New York, 1971. · Zbl 0705.18001
[55] Morita, K., Duality for modules and its applications to the theory of rings with minimum condition, Sci. rep. Tokyo kyoiku daigaku section A, 6, 83-142, (1958) · Zbl 0080.25702
[56] Morita, K., Adjoint pairs of functors and Frobenius extensions, Sci. rep. Tokyo kyoiku daigaku section A, 9, 40-71, (1965) · Zbl 0163.28602
[57] Muhly, P.S.; Renault, J.N.; Williams, D.P., Equivalence and isomorphism for groupoid \(C\^{}\{∗\}\)-algebras, J. operator theory, 17, 1, 3-22, (1987) · Zbl 0645.46040
[58] Nest, R.; Tsygan, B., Algebraic index theorem, Commun. math. phys., 172, 223-262, (1995) · Zbl 0887.58050
[59] Nest, R.; Tsygan, B., Algebraic index theorem for families, Adv. math., 113, 151-205, (1995) · Zbl 0837.58029
[60] Omori, H.; Maeda, Y.; Yoshioka, A., Weyl manifolds and deformation quantization, Adv. math., 85, 224-255, (1991) · Zbl 0734.58011
[61] Parvathi, M.; Ramakrishna Rao, A., Morita equivalence for a larger class of rings, Publ. math. debrecen, 35, 1/2, 65-71, (1988) · Zbl 0682.16031
[62] Pflaum, M.J., A deformation-theoretical approach to Weyl quantization on Riemannian manifolds, Lett. math. phys., 45, 277-294, (1998) · Zbl 0995.53057
[63] Pflaum, M.J., The normal symbol on Riemannian manifolds, New York J. math., 4, 97-125, (1998) · Zbl 0903.35099
[64] I. Raeburn, D.P. Williams, Morita equivalence and continuous-trace \(C\^{}\{∗\}\)-algebras, American Mathematical Society, Providence, RI, 1998. · Zbl 0922.46050
[65] Rieffel, M.A., Induced representations of \(C\^{}\{∗\}\)-algebras, Bull. am. math. soc., 78, 606-609, (1972) · Zbl 0256.22011
[66] Rieffel, M.A., Morita equivalence for \(C\^{}\{∗\}\)-algebras and \(W\^{}\{∗\}\)-algebras, J. pure appl. algebra, 5, 51-96, (1974) · Zbl 0295.46099
[67] M.A. Rieffel, Morita Equivalence for Operator Algebras, American Mathematical Society, Providence, RI, 1982, pp. 285-298.
[68] Rieffel, M.A., Deformation quantization of Heisenberg manifolds, Commun. math. phys., 122, 531-562, (1989) · Zbl 0679.46055
[69] M.A. Rieffel, A. Schwarz, Morita equivalence of multidimensional noncommutative tori, math.QA/9803057. · Zbl 0968.46060
[70] W. Rudin, Real and Complex Analysis, 3rd Edition, McGraw-Hill, New York, 1987. · Zbl 0925.00005
[71] Schwarz, A., Morita equivalence and duality, Nucl. phys. B, 534, 3, 720-738, (1998) · Zbl 1079.81066
[72] N. Seiberg, E. Witten, String theory and noncommutative geometry, hep-th/9908142. · Zbl 0957.81085
[73] D. Sternheimer, Deformation quantization: twenty years after, in: J. Rembieliński (Ed.), Particles, Fields, and Gravitation (Lodz 1998), AIP Press, New York, 1998, pp. 107-145. · Zbl 0977.53082
[74] T. Voronov, Lecture Notes on Differentiable Manifolds, Berkeley, CA, 1997.
[75] Waldmann, S., Locality in GNS representations of deformation quantization, Commun. math. phys., 210, 467-495, (2000) · Zbl 0976.81019
[76] Watts, C.E., Intrinsic characterizations of some additive functors, Proc. am. math. soc., 11, 5-8, (1960) · Zbl 0093.04101
[77] A. Weinstein, Deformation quantization, Séminaire Bourbaki 46ème année, Astérisque 789 (1994) 389-409.
[78] A. Weinstein, P. Xu, Hochschild cohomology and characteristic classes for star-products, in: A. Khovanskij, A. Varchenko, V. Vassiliev (Eds.), Geometry of Differential Equations (Dedicated to V. I. Arnold on the occasion of his 60th birthday), Vol. 177-194, American Mathematical Society, Providence, RI, 1998.
[79] P. Xu, Morita equivalence of symplectic groupoids and Poisson manifolds, Ph.D. Thesis, University of California, Berkeley, CA, 1990.
[80] Xu, P., Morita equivalence of Poisson manifolds, Commun. math. phys., 142, 493-509, (1991) · Zbl 0746.58034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.