×

Subsolution-supersolution method in variational inequalities. (English) Zbl 1040.49008

The subsolution-supersolution method for equations is extended to a class of elliptic variational inequalities of the type \[ \int_\Omega A(x,\nabla u) \cdot(\nabla v-\nabla u)\;dx\geq \int_\Omega F(x,u)(v-u)\;dx \] \(\forall v\in K, \;K\subset W^{1,p}(\Omega),\) closed convex. Under additional assumptions on \(K\), the author proves the existence of a maximal and a minimal solution. The proofs rely mainly on the lattice structure of the Sobolev space \(W^{1,p}(\Omega)\). The obtained results are also of interest in view of the fact that the solution set of variational inequalities is in general more complicated than the solution set of equations.

MSC:

49J40 Variational inequalities
35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
49K20 Optimality conditions for problems involving partial differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akô, K., On the Dirichlet problem for quasi-linear elliptic differential equations of the second order, J. math. soc. Japan, 13, 45-62, (1961) · Zbl 0102.09303
[2] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM rev., 18, 620-709, (1976) · Zbl 0345.47044
[3] Ang, D.D.; Schmitt, K.; Le, V.K., Noncoercive variational inequalities: some applications, Nonlinear anal. TMA, 15, 497-512, (1990) · Zbl 0735.49007
[4] Baiocchi, C.; Buttazzo, G.; Gastaldi, F.; Tomarelli, F., General existence theorems for unilateral problems in continuum mechanics, Arch. rational mech. anal., 100, 149-189, (1988) · Zbl 0646.73011
[5] Baiocchi, C.; Gastaldi, F.; Tomarelli, F., Some existence results on noncoercive variational inequalities, Ann. scuola norm. sup. Pisa cl. sci., 13, 617-659, (1986) · Zbl 0644.49004
[6] Bebernes, J.W.; Schmitt, K., On the existence of maximal and minimal solutions for parabolic partial differential equations, Proc. amer. math. soc., 73, 211-218, (1979) · Zbl 0399.35065
[7] H. Berestycki, P.L. Lions, Some applications of the method of super and subsolutions, in: Bifurcation and Nonlinear Eigenvalue Problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978), Springer, Berlin, 1980, pp. 16-41.
[8] Browder, F., Fixed point theory and nonlinear problems, Bull. amer. math. soc., 9, 1-39, (1983) · Zbl 0533.47053
[9] Carl, S., A combined variational-monotone iterative method for elliptic boundary value problems with discontinuous nonlinearity, Appl. anal., 43, 21-45, (1992) · Zbl 0713.35032
[10] Carl, S., On the existence of extremal weak solutions for a class of quasilinear parabolic problems, Differential integral equations, 6, 1493-1505, (1993) · Zbl 0805.35057
[11] Carl, S., Leray-Lions operators perturbed by state-dependent subdifferentials, Nonlinear world, 3, 505-518, (1996) · Zbl 0892.35060
[12] Carl, S.; Diedrich, H., The weak upper and lower solution method for quasilinear elliptic equations with generalized subdifferentiable perturbations, Appl. anal., 56, 263-278, (1995) · Zbl 0832.35039
[13] Carl, S.; Heikkilä, S., On extremal solutions of an elliptic boundary value problem involving discontinuous nonlinearities, Differential integral equations, 5, 581-589, (1992) · Zbl 0785.35034
[14] Carl, S.; Heikkilä, S.; Lakshmikantham, V., Nonlinear elliptic differential inclusions governed by state-dependent subdifferentials, Nonlinear anal., 25, 729-745, (1995) · Zbl 0931.35203
[15] Dancer, E.N.; Sweers, G., On the existence of a maximal weak solution for a semilinear elliptic equation, Differential integral equations, 2, 533-540, (1989) · Zbl 0732.35027
[16] Deuel, J.; Hess, P., A criterion for the existence of solutions of non-linear elliptic boundary value problems, Proc. roy. soc. Edinburgh sect. A, 74, 49-54, (1974/1975) · Zbl 0331.35028
[17] Deuel, J.; Hess, P., Nonlinear parabolic boundary value problems with upper and lower solutions, Israel J. math., 29, 92-104, (1978) · Zbl 0372.35045
[18] A. Friedman, Variational Principles and Free Boundary Value Problems, Wiley-Interscience, New York, 1983.
[19] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. · Zbl 0562.35001
[20] Heikkilä, S.; Lakshmikantham, V., Extension of the method of upper and lower solutions for discontinuous differential equations, Differential equations dynam. systems, 1, 73-85, (1993) · Zbl 0872.34007
[21] Hess, P., On the solvability of nonlinear elliptic boundary value problems, Indiana univ. math. J., 25, 461-466, (1976) · Zbl 0329.35029
[22] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities, Academic Press, New York, 1980. · Zbl 0457.35001
[23] Kura, T., The weak supersolution-subsolution method for second order quasilinear elliptic equations, Hiroshima math. J., 19, 1-36, (1989) · Zbl 0735.35056
[24] Kučera, M., A global continuation theorem for obtaining eigenvalues and bifurcation points, Czech. math. J., 38, 120-137, (1988) · Zbl 0665.35010
[25] Le, V.K., On global bifurcation of variational inequalities and applications, J. differential equations, 141, 254-294, (1997) · Zbl 0893.58021
[26] Le, V.K., On some equivalent properties of sub- and supersolutions in second order quasilinear elliptic equations, Hiroshima math. J., 28, 373-380, (1998) · Zbl 0912.35061
[27] Le, V.K.; Schmitt, K., Minimization problems for noncoercive functionals subject to constraints, Trans. amer. math. soc., 347, 4485-4513, (1995) · Zbl 0849.35040
[28] V.K. Le, K. Schmitt, Global Bifurcation in Variational Inequalities: Applications to Obstacle and Unilateral Problems, Appl. Math. Sci., Vol. 123, Springer, New York, 1997. · Zbl 0876.49008
[29] Le, V.K.; Schmitt, K., On boundary value problems for degenerate quasilinear elliptic equations and inequalities, J. differential equations, 144, 170-218, (1998) · Zbl 0912.35069
[30] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Paris, 1969.
[31] Miersemann, E., Eigenvalue problems for variational inequalities, Contemp. math., 4, 25-43, (1984) · Zbl 0474.49012
[32] Papageorgiou, N., On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities, J. math. anal. appl., 205, 434-453, (1997) · Zbl 0901.35043
[33] Papageorgiou, N.; Papalini, F.; Vercillo, S., Minimal solutions of nonlinear parabolic problems with unilateral constraints, Houston J. math., 23, 189-201, (1997) · Zbl 0884.35079
[34] Quittner, P., Solvability and multiplicity results for variational inequalities, Comment. math. univ. carolin., 30, 281-302, (1989) · Zbl 0698.49004
[35] J.F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987. · Zbl 0606.73017
[36] Sattinger, D.H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana univ. math. J., 21, 979-1000, (1972) · Zbl 0223.35038
[37] Schuricht, F., Minimax principle for eigenvalue variational inequalities in the nonsmooth case, Math. nachr., 152, 121-143, (1991) · Zbl 0745.49012
[38] Szulkin, A., On a class of variational inequalities involving gradient operators, J. math. anal. appl., 100, 486-499, (1982) · Zbl 0551.49008
[39] Szulkin, A., Positive solutions of variational inequalities: a degree theoretic approach, J. differential equations, 57, 90-111, (1985) · Zbl 0535.35029
[40] Szulkin, A., Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. inst. H. Poincaré, anal. non linéaire, 3, 77-109, (1986) · Zbl 0612.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.