×

Hardy spaces that support no compact composition operators. (English) Zbl 1041.46019

Let \(G\) be a simply connected domain which is properly contained in \(\mathbb C\) and let \(\tau\) be a Riemann map of the open unit disc \(\mathbb U\) onto \(G\). For \(0<p<\infty\), the {Hardy space} \(\mathcal H^p(G)\) consists of all analytic functions \(F:G\to\mathbb C\) such that the integrals of \(|F|^p\) over the curves \(\tau(|z|=r)\), \(0<r<1\), are bounded. The main theorem states that \(\mathcal H^p(G)\) supports compact composition operators if and only if \(\partial G\) has finite one-dimensional Hausdorff measure. Actually, this holds with ‘compact’ replaced by Riesz. Related results are obtained for Bergman spaces on \(G\). There is also a characterization of domains \(G\) for which every composition operator \(\mathcal H^p(G)\) is bounded: for this it is necessary and sufficient that \(\tau'\) and \(1/\tau'\) are both bounded on \(\mathbb U\).

MSC:

46E15 Banach spaces of continuous, differentiable or analytic functions
47B33 Linear composition operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bourdon, P.S.; Shapiro, J.H., Riesz composition operators, Pacific J. math., 181, 231-245, (1997) · Zbl 0910.47025
[2] Caughran, J.; Schwartz, H.J., Spectra of compact composition operators, Proc. amer. math. soc., 51, 127-130, (1975) · Zbl 0309.47003
[3] Contreras, M.D.; Hernández-Díaz, A.G., Weighted composition operators on Hardy spaces, J. math. anal. appl., 263, 224-233, (2001) · Zbl 1026.47016
[4] Cowen, C.C.; MacCluer, B.D., Composition operators on spaces of analytic functions, (1995), CRC Press Boca Raton · Zbl 0873.47017
[5] Dowson, H., Spectral theory of linear operators, (1978), Academic Press New York · Zbl 0384.47001
[6] Duren, P.L., Univalent functions, (1983), Springer Berlin
[7] P.L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970, Dover, New York, 2000. · Zbl 0215.20203
[8] Garnett, J., Bounded analytic functions, (1981), Academic Press New York · Zbl 0469.30024
[9] Gramsch, B., Integration und holomorphe funktionen in lokalbeschränkten Räumen, Math. annalen, 162, 190-210, (1965) · Zbl 0134.12303
[10] F. Jafari, et al. (Eds.), Studies on Composition Operators, Contemporary Mathematics, Vol. 213, Amer. Math. Soc. Providence, RI, 1998.
[11] Kelley, J.L.; Namioka, I., Linear topological spaces, (1963), Van Nostrand New York
[12] Koosis, P., Introduction to Hp spaces, (1998), Cambridge University Press Cambridge
[13] Littlewood, J.E., On inequalities in the theory of functions, Proc. London math. soc., 23, 481-519, (1925) · JFM 51.0247.03
[14] Matache, V., Compact composition operators on Hardy spaces of a half-plane, Proc. amer. math. soc., 127, 1483-1491, (1999) · Zbl 0916.47022
[15] Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
[16] Pommerenke, Ch., Boundary behavior of conformal maps, (1992), Springer Berlin · Zbl 0534.30008
[17] Przeworska-Rolewicz, D.; Rolewicz, S., Equations in linear spaces, (1968), PWN-Polish Scientific Publishers Warsaw · Zbl 0181.40501
[18] Rudin, W., Real and complex analysis, (1987), McGraw-Hill New York · Zbl 0925.00005
[19] Ruston, A.F., Operators with a Fredholm theory, J. London math. soc., 29, 318-326, (1954) · Zbl 0055.10902
[20] H.J. Schwartz, Composition operators on Hp, Thesis, University of Toledo, 1969.
[21] Shapiro, J.H., The essential norm of a composition operator, Ann. math., 125, 375-404, (1987) · Zbl 0642.47027
[22] Shapiro, J.H., Composition operators and classical function theory, (1993), Springer Berlin · Zbl 0791.30033
[23] J.H. Shapiro, A Primer of Fredholm Theory, in preparation.
[24] Shapiro, J.H.; Taylor, P.D., Compact, nuclear, and hilbert – schmidt composition operators on H2, Indiana univ. math. J., 125, 471-496, (1973) · Zbl 0276.47037
[25] Williamson, J.H., Compact linear operators in linear topological spaces, J. London math. soc., 29, 149-156, (1954) · Zbl 0055.10901
[26] Zhu, K., Operator theory in function spaces, (1990), Marcel Dekker New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.