×

Spikes for the Gierer-Meinhardt system in two dimensions: the strong coupling case. (English) Zbl 1042.35005

The authors deal with the study of the Gierer-Meinhardt system which models biological pattern formation. Numerical computations often low that the Gierer-Meinhardt system has stable solutions which display patterns of multiple interior peaks. Here the authors rigorously establish the existence and stability of such solutions of the full Gierer-Meinhardt system in two dimensions far from homogenity. To this end Green’s function together with its derivatives play a major role.

MSC:

35B35 Stability in context of PDEs
35K50 Systems of parabolic equations, boundary value problems (MSC2000)
35K55 Nonlinear parabolic equations
35Q80 Applications of PDE in areas other than physics (MSC2000)
92C15 Developmental biology, pattern formation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adimurthi; Mancinni, G.; Yadava, S. L., The role of mean curvature in a semilinear Neumann problem involving the critical Sobolev exponent, Comm. Partial Differential Equations, 20, 591-631 (1995) · Zbl 0847.35047
[2] Adimurthi; Pacella, F.; Yadava, S. L., Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113, 318-350 (1993) · Zbl 0793.35033
[3] Adimurthi; Pacella, F.; Yadava, S. L., Characterization of concentration points of \(L^∞\) -estimates for solutions involving the critical Sobolev exponent, Differential Integral Equations, 8, 41-68 (1995) · Zbl 0814.35029
[4] Bates, P.; Fusco, G., Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations, 162, 283-356 (2000) · Zbl 0990.35016
[5] Bates, P.; Dancer, E. N.; Shi, J., Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations, 4, 1-69 (1999) · Zbl 1157.35407
[6] Cerami, G.; Wei, J., Multiplicity of multiple interior spike solutions for some singularity perturbed Neumann problem, Internat. Math. Res. Notes, 12, 601-626 (1998) · Zbl 0916.35037
[7] Chen, X.; Kowalczyk, M., Slow dynamics of interior spikes in the shadow Gierer-Meinhardt system, Adv. Differential Equations, 6, 847-872 (2001) · Zbl 1032.35025
[8] del Pino, M., A priori estimates and applications to existence-nonexistence for a semilinear elliptic system, Indiana Univ. Math. J., 43, 703-728 (1994) · Zbl 0806.35086
[9] del Pino, M.; Felmer, P.; Wei, J., On the role of mean curvature in some singularity perturbed Neumann problems, SIAM J. Math. Anal., 31, 63-79 (1999) · Zbl 0942.35058
[10] Ermentrout, B., Stripes or spots? Non-linear effects in bifurcation of reaction-diffusion equations on a square, Proc. Roy. Soc. London A, 434, 413-417 (1991) · Zbl 0727.92003
[11] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076
[12] Gui, C.; Ghoussoub, N., Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229, 443-474 (1998) · Zbl 0955.35024
[13] Gui, C.; Ghoussoub, N., New Variational Principles and Multi-peak Solutions for the Semilinear Neumann Problem Involving the Critical Exponent. New Variational Principles and Multi-peak Solutions for the Semilinear Neumann Problem Involving the Critical Exponent, Canadian Mathematical Society, 1945-1995, 3 (1996), Canadian Math. Soc: Canadian Math. Soc Ottawa, p. 125-152 · Zbl 1205.58008
[14] Gierer, A.; Meinhardt, H., A theory of biological pattern formation, Kybernetik (Berlin), 12, 30-39 (1972) · Zbl 1434.92013
[15] Gui, C., Multi-peak solutions for a semilinear Neumann problem, Duke Math. J., 84, 739-769 (1996) · Zbl 0866.35039
[16] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in \(R^N\), Adv. Math. Suppl. Stud. A, 7, 369-402 (1981)
[17] Gui, C.; Wei, J.; Winter, M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17, 47-82 (2000) · Zbl 0944.35020
[18] Gui, C.; Wei, J., Multiple interior peak solutions for some singular perturbation problems, J. Differential Equations, 158, 1-27 (1999) · Zbl 1061.35502
[19] Holloway, D. M., Reaction-Diffusion Theory of Localized Structures with Application to Vertebrate Organogenesis (1995), University of British Columbia
[20] Iron, D.; Ward, M., A metastable spike solution for a non-local reaction-diffusion model, SIAM J. Appl. Math., 60, 778-802 (2000) · Zbl 0956.35011
[21] Iron, D.; Ward, M.; Wei, J., The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150, 25-62 (2001) · Zbl 0983.35020
[22] Keller, K. F.; Segal, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[23] Kowalczyk, M., Multiple strike layers in the shadow Gierer-Meinhardt system: existence of equilibria and approximate invariant manifold, Duke Math. J., 98, 59-111 (1999) · Zbl 0962.35063
[24] Li, Y.-Y., On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations, 23, 487-545 (1998) · Zbl 0898.35004
[25] Lyons, M. J.; Harrison, L. G., A class of reaction-diffusion mechanisms which preferentially select striped patterns, Chem. Phys. Lett., 183, 158-164 (1991)
[26] Keener, J. P., Activators and inhibitors in pattern formation, Stud. Appl. Math., 59, 1-23 (1978) · Zbl 0407.92023
[27] Kwong, M. K.; Zhang, L., Uniqueness of positive solutions of \(Δu +f(u)=0\) in an annulus, Differential Integral Equations, 4, 583-599 (1991) · Zbl 0724.34023
[28] Lin, C.-S.; Ni, W.-M., On the diffusion coefficient of a semilinear Neumann problem, Calculus of Variations and Partial Differential Equations, Trento 1986. Calculus of Variations and Partial Differential Equations, Trento 1986, Lecture Notes in Mathematics, 1340 (1988), Springer-Verlag: Springer-Verlag Berlin-New York, p. 160-174
[29] Meinhardt, H., Models of Biological Pattern Formation (1982), Academic Press: Academic Press London
[30] Meinhardt, H., The Algorithmic Beauty of Sea Shells (1998), Springer-Verlag: Springer-Verlag Berlin/Heidelberg
[31] Ni, W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Not. Amer. Math. Soc., 45, 9-18 (1998) · Zbl 0917.35047
[32] Ni, W.-M.; Pan, X.; Takagi, I., Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J., 67, 1-20 (1992) · Zbl 0785.35041
[33] Ni, W.-M.; Takagi, I., On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc., 297, 351-368 (1986) · Zbl 0635.35031
[34] Ni, W.-M.; Takagi, I., On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41, 819-851 (1991) · Zbl 0754.35042
[35] Ni, W.-M.; Takagi, I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., 70, 247-281 (1993) · Zbl 0796.35056
[36] Ni, W.-M.; Takagi, I., Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math., 12, 327-365 (1995) · Zbl 0843.35006
[38] Ni, W.-M.; Wei, J., On the location and profile of spike-layer solutions to singularity perturbed semilinear Dirichlet problems, Comm. Pure. Appl. Math., 48, 731-768 (1995) · Zbl 0838.35009
[39] Nishiura, Y., Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13, 555-593 (1982) · Zbl 0501.35010
[40] Oh, Y. G., Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class \((V)_a\), Comm. Partial Differential Equations, 13, 1499-1519 (1988) · Zbl 0702.35228
[41] Oh, Y. G., On positive multi-bump bound states of nonlinear Schrödinger equations under multiple-well potentials, Comm. Math. Phys., 131, 223-253 (1990) · Zbl 0753.35097
[42] Takagi, I., Point-condensation for a reaction-diffusion system, J. Differential Equations, 61, 208-249 (1986) · Zbl 0627.35049
[43] Turing, A. M., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London B, 237, 37-72 (1952) · Zbl 1403.92034
[44] Ward, M. J., An asymptotic analysis of localized solutions for some reaction-diffusion models in multi-dimensional domains, Stud. Appl. Math., 97, 103-126 (1996) · Zbl 0932.35059
[45] Wei, J., On the boundary spike layer solutions of singularity perturbed semilinear Neumann problem, J. Differential Equations, 134, 104-133 (1997) · Zbl 0873.35007
[46] Wei, J., On the interior spike layer solutions of singularly perturbed semilinear Neumann problem, Tohoku Math. J., 50, 159-178 (1998) · Zbl 0918.35024
[47] Wei, J., On the interior spike layer solutions for some singular perturbation problems, Proc. Roy. Soc. Edinburgh, Section A, 128, 849-874 (1998) · Zbl 0944.35021
[49] Wei, J., On single interior spike solutions of Gierer-Meinhardt system: uniqueness and spectrum estimates, Europ. J. Appl. Math., 10, 353-378 (1999) · Zbl 1014.35005
[50] Wei, J.; Winter, M., Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 459-492 (1998) · Zbl 0910.35049
[51] Wei, J.; Winter, M., On the Cahn-Hilliard equations II, Interior spile layer solutions, J. Differential Equations, 148, 231-267 (1998)
[52] Wei, J.; Winter, M., Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc., 59, 585-606 (1999)
[53] Wei, J.; Winter, M., On the two-dimensional Gierer-Meinhardt system with strong coupling, SIAM J. Math. Anal., 30, 1241-1263 (1999) · Zbl 0955.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.