## Overdispersion: Models and estimation.(English)Zbl 1042.62578

Summary: Overdispersion models for discrete data are considered and placed in a general framework. A distinction is made between completely specified models and those with only a mean-variance specification. Different formulations for the overdispersion mechanism can lead to different variance functions which can be placed within a general family. In addition, many different estimation methods have been proposed, including maximum likelihood, moment methods, extended quasi-likelihood, pseudo-likelihood and non-parametric maximum likelihood. We explore the relationships between these methods and examine their application to a number of standard examples for count and proportion data. A simple graphical method using half-normal plots is used to examine different overdispersion models.

### MSC:

 62J12 Generalized linear models (logistic models) 62F10 Point estimation 62G08 Nonparametric regression and quantile regression 62A09 Graphical methods in statistics
Full Text:

### References:

 [1] Aitkin, M. A.: NPML estimation of the mixing distribution in general statistical models with unobserved random variation. Statistical modelling (1995) [2] Aitkin, M. A.: A general maximum likelihood analysis of overdispersion in generalized linear models. Statist. comput. 6, 251-262 (1996) [3] Aitkin, M. A.; Francis, B. J.: Fitting overdispersed generalized linear models by nonparametric maximum likelihood. GLIM newslett. 25, 37-45 (1995) [4] Anderson, D. A.; Hinde, J. P.: Random effects in generalized linear models and the EM algorithm. Comm. statist. A theory methods 17, 3847-3856 (1988) · Zbl 0696.62304 [5] Atkinson, A. C.: Plots, transformations and regression. (1985) · Zbl 0582.62065 [6] Breslow, N.: Extra-Poisson variation in log-linear models. Appl. statist. 33, 38-44 (1984) [7] Breslow, N.; Clayton, D.: Approximate inference in generalized linear mixed models. J. amer. Statist. assoc. 88, 9-25 (1993) · Zbl 0775.62195 [8] Brooks, R. J.: Approximate likelihood ratio tests in the analysis of beta-binomial data. Appl. statist. 33, 285-289 (1984) [9] Carroll, R. J.; Ruppert, D.: Transformation and weighting in regression. (1988) · Zbl 0666.62062 [10] Clayton, D.: Generalized linear mixed models. Markov chain Monte Carlo in practice (1996) · Zbl 0841.62059 [11] Collett, D.: Modelling binary data. (1991) · Zbl 1041.62058 [12] Crowder, M.: Beta-binomial anova for proportions. Appl. statist. 27, 34-37 (1978) [13] Demétrio, C. G. B.; Hinde, J. P.: Half-normal plots and overdispersion. GLIM newslett. 27, 19-26 (1997) [14] Efron, B.: Double exponential families and their use in generalized linear regression. J. amer. Statist. assoc. 81, 709-721 (1986) · Zbl 0611.62072 [15] Engel, B.; Keen, A.: A simple approach for the analysis of generalized linear mixed models. Statist. neerlandica 48, 1-22 (1994) · Zbl 0826.62055 [16] Finney, D. J.: Probit analysis. (1971) · Zbl 0227.62065 [17] Fitzmaurice, G. M.: Model selection with overdispersed data. The statistician 46, 81-91 (1987) [18] Ganio, L. M.; Schafer, D. W.: Diagnostics for overdispersion. J. amer. Statist. assoc. 87, 795-804 (1992) [19] Gaver, D. P.; O’muircheartaigh, I. G.: Robust empirical Bayes analysis of event rates. Technometrics 29, 1-15 (1987) · Zbl 0611.62124 [20] Hinde, J. P.: Compound Poisson regression models. Glim82, 109-121 (1982) · Zbl 0505.62050 [21] Hinde, J. P.: Macros for Fitting overdispersion models. GLIM newslett. 26, 10-19 (1996) [22] Jorgensen, B.: Exponential dispersion models (with discussion). J. roy. Statist. soc. Ser. B 49, 127-162 (1987) [23] Jorgensen, B.: The theory of dispersion models. (1997) [24] Lawless, J. F.: Negative binomial and mixed Poisson regression. Canadian J. Statist. 15, 209-225 (1987) · Zbl 0632.62060 [25] Lee, Y.; Nelder, J. A.: Hierarchical generalized linear models (with discussion). J. roy. Statist. soc. Ser. B 58, 619-678 (1996) · Zbl 0880.62076 [26] Liang, K. -Y.; Mccullagh, P.: Case studies in binary dispersion. Biometrics 49, 623-630 (1993) [27] Lindsey, J. K.: Modelling frequency and count data. (1995) [28] Manly, B.: Regression models for proportions with extraneous variance. Biometrie-praximetrie 18, 1-18 (1978) [29] Mccullagh, P.; Nelder, J. A.: Generalized linear models. (1989) · Zbl 0744.62098 [30] Mcculloch, C.: Maximum likelihood variance components estimation for binary data. J. amer. Statist. assoc. 89, 330-335 (1994) · Zbl 0800.62139 [31] Moore, D. F.: Asymptotic properties of moment estimates for overdispersed counts and proportions. Biometrika 73, 583-588 (1986) · Zbl 0614.62031 [32] Nelder, J. A.: Quasi-likelihood and GLIM. Generalized linear models, 120-127 (1985) · Zbl 0591.62062 [33] Nelder, J. A.; Lee, Y. Y.: Likelihood, quasi-likelihood and pseudo-likelihood: some comparisons. J. roy. Statist. soc. Ser. B 54, 273-284 (1992) [34] Nelder, J. A.; Pregibon, D.: An extended quasi-likelihood function. Biometrika 74, 221-232 (1987) · Zbl 0621.62078 [35] Prentice, R. L.: Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors. J. amer. Statist. assoc. 81, 321-327 (1986) · Zbl 0608.62086 [36] Weil, C.: Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenesis or carcinogenesis. Food cosmetics toxicol. 8, 177-182 (1970) [37] Williams, D. A.: Extra-binomial variation in logistic-linear models. Appl. statist. 31, 144-148 (1982) · Zbl 0488.62055 [38] Williams, D. A.: Overdispersion in logistic-linear models. Statistics in toxicology (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.