Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences. (English) Zbl 1044.11108 Notices Am. Math. Soc. 50, No. 8, 912-915 (2003). From the text: This article gives a brief introduction to the On-Line Encyclopedia of Integer Sequences (or OEIS). The OEIS is a database of nearly 90,000 sequences of integers, arranged lexicographically. The entry for a sequence lists the initial terms (50 to 100, if available), a description, formulae, programs to generate the sequence, references, links to relevant web pages, and other information. Since 1996 an electronic version has been accessible via the Internet athttps://oeis.org/. If a list of numbers is entered there, the reply will display the entries for all matching sequences. Cited in 7 ReviewsCited in 1509 Documents MSC: 11Y55 Calculation of integer sequences 11-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to number theory Software:OEIS × Cite Format Result Cite Review PDF Full Text: arXiv Link Digital Library of Mathematical Functions: In §19.20(iv) 𝑅_𝐷(𝑥,𝑦,𝑧) ‣ §19.20 Special Cases ‣ Symmetric Integrals ‣ Chapter 19 Elliptic Integrals In §19.20(i) 𝑅_𝐹(𝑥,𝑦,𝑧) ‣ §19.20 Special Cases ‣ Symmetric Integrals ‣ Chapter 19 Elliptic Integrals In §19.30(iii) Bernoulli’s Lemniscate ‣ §19.30 Lengths of Plane Curves ‣ Applications ‣ Chapter 19 Elliptic Integrals In §25.11(xi) Sums ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §3.12 Mathematical Constants ‣ Areas ‣ Chapter 3 Numerical Methods In §3.12 Mathematical Constants ‣ Areas ‣ Chapter 3 Numerical Methods In §3.12 Mathematical Constants ‣ Areas ‣ Chapter 3 Numerical Methods §3.12 Mathematical Constants ‣ Areas ‣ Chapter 3 Numerical Methods In §4.2(ii) Logarithms to a General Base 𝑎 ‣ §4.2 Definitions ‣ Logarithm, Exponential, Powers ‣ Chapter 4 Elementary Functions In §4.2(ii) Logarithms to a General Base 𝑎 ‣ §4.2 Definitions ‣ Logarithm, Exponential, Powers ‣ Chapter 4 Elementary Functions In §4.2(ii) Logarithms to a General Base 𝑎 ‣ §4.2 Definitions ‣ Logarithm, Exponential, Powers ‣ Chapter 4 Elementary Functions In §4.4(iii) Limits ‣ §4.4 Special Values and Limits ‣ Logarithm, Exponential, Powers ‣ Chapter 4 Elementary Functions In §5.17 Barnes’ 𝐺-Function (Double Gamma Function) ‣ Properties ‣ Chapter 5 Gamma Function In §5.2(ii) Euler’s Constant ‣ §5.2 Definitions ‣ Properties ‣ Chapter 5 Gamma Function In §5.4(i) Gamma Function ‣ §5.4 Special Values and Extrema ‣ Properties ‣ Chapter 5 Gamma Function In §5.4(i) Gamma Function ‣ §5.4 Special Values and Extrema ‣ Properties ‣ Chapter 5 Gamma Function In §5.4(i) Gamma Function ‣ §5.4 Special Values and Extrema ‣ Properties ‣ Chapter 5 Gamma Function In §5.4(i) Gamma Function ‣ §5.4 Special Values and Extrema ‣ Properties ‣ Chapter 5 Gamma Function In §5.4(i) Gamma Function ‣ §5.4 Special Values and Extrema ‣ Properties ‣ Chapter 5 Gamma Function In §6.13 Zeros ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals Online Encyclopedia of Integer Sequences: Schroeder’s second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers. Initial term of sequence An.