×

Conservative hybrid compact-WENO schemes for shock-turbulence interaction. (English) Zbl 1045.76029

From the summary: We propose an efficient hybrid compact-WENO scheme to obtain high resolution in shock-turbulence interaction problems. The algorithm is based on a fifth-order compact upwind algorithm in conservation form to solve for the smooth part of the flow field, which is coupled with a high-resolution weighted essentially nonoscillatory (WENO) scheme to capture the discontinuities. The derivation of the compact scheme is discussed in detail, and a stability study of the full discretization is included. The performance of the numerical algorithm has been assessed by performing preliminary simulations on benchmark problems, such as the interaction of a shock wave with entropy and vortical disturbances.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
76F99 Turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, N. A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27 (1996) · Zbl 0859.76041
[2] Adams, N. A., Direct numerical simulation of turbulent compression corner flow, Theor. Comp. Fluid Dyn., 12, 109 (1998) · Zbl 0931.76033
[3] Arora, M.; Roe, P. L., On postshock oscillations due to shock capturing schemes in unsteady flows, J. Comput. Phys., 130, 25 (1997) · Zbl 0869.76050
[4] Balsara, D.; Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405 (2000) · Zbl 0961.65078
[5] M. Carpenter, D. Gottlieb, and, C.-W. Shu, On the conservation and convergence to weak solutions of global schemes, J. Sci. Comput, in press.; M. Carpenter, D. Gottlieb, and, C.-W. Shu, On the conservation and convergence to weak solutions of global schemes, J. Sci. Comput, in press. · Zbl 1030.65097
[6] Chang, C. T., Interaction of a plane shock and oblique plane disturbances with special reference to entropy waves, J. Aero. Sci., 24, 675 (1957) · Zbl 0080.19402
[7] Chu, B. T.; Kovásznay, L. S.G., Non-linear interactions in a viscous heat-conducting compressible gas, J. Fluid Mech., 3, 494 (1957)
[8] Cockburn, B.; Shu, C.-W., Nonlinearly stable compact schemes for shock calculation, SIAM J. Numer. Anal., 31, 607 (1994) · Zbl 0805.65085
[9] Collatz, L., The Numerical Treatment of Differential Equations (1966), Springer-Verlag: Springer-Verlag New York · Zbl 0221.65088
[10] Colonius, T.; Lele, S.; Moin, P., Boundary conditions for direct computation of aerodynamic sound, AIAA J., 31, 1574 (1993) · Zbl 0785.76069
[11] Deng, X.; Maekawa, H., Compact high-order accurate nonlinear schemes, J. Comput. Phys., 130, 77 (1997) · Zbl 0870.65075
[12] Deng, X.; Zhang, H., Developing high-order weighted compact nonlinear schemes, J. Comput. Phys., 165, 22 (2000) · Zbl 0988.76060
[13] Freund, J. B., Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA J., 35, 740 (1997) · Zbl 0903.76081
[14] Gaitonde, D.; Shang, J. S., Optimized compact-difference-based finite-volume schemes for linear wave phenomena, J. Comput. Phys., 138, 617 (1997) · Zbl 0898.65055
[15] Garnier, E.; Mossi, M.; Sagaut, P.; Comte, P.; Deville, M., On the use of shock-capturing for large-eddy simulation, J. Comput. Phys., 153, 273 (1999) · Zbl 0949.76042
[16] Garnier, E.; Sagaut, P.; Deville, M., A class of explicit ENO filters with application to unsteady flows, J. Comput. Phys., 170, 184 (2001) · Zbl 1011.76056
[17] Grasso, F.; Pirozzoli, S., Simulations and analysis of the coupling process of compressible vortex pairs: free evolution and shock induced coupling, Phys. Fluids, 13, 1343 (2001) · Zbl 1184.76194
[18] Gustafsson, B., The convergence rate for difference approximations to mixed initial boundary value problems, Math. Comput., 29, 396 (1975) · Zbl 0313.65085
[19] Hannapel, R.; Hauser, T.; Friedrich, R., A comparison of ENO and TVD schemes for the computation of shock-turbulence interaction, J. Comput. Phys., 121, 176 (1995) · Zbl 0834.76058
[20] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non oscillatory schemes, III, J. Comput. Phys., 71, 213 (1987)
[21] Hirsch, C., Numerical Computation of Internal and External Flows (1988), Wiley: Wiley New York · Zbl 0662.76001
[22] Jiang, G. S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202 (1996) · Zbl 0877.65065
[23] Jiang, L.; Shan, H.; Liu, C., Weighted compact schemes for shock capturing, Int. J. Comput. Fluid D., 15, 147-155 (2001) · Zbl 1044.76046
[24] Kobayashi, M. H., On a class of Padé finite volume methods, J. Comput. Phys., 156, 137 (1999) · Zbl 0940.65092
[25] Kopal, Z., Numerical Analysis (1961), Wiley: Wiley New York · Zbl 0101.33701
[26] Lee, S.; Lele, S. K.; Moin, P., Direct numerical simulation of isotropic turbulence interacting with a weak shock wave, J. Fluid Mech., 251, 533 (1993)
[27] Lee, S.; Lele, S. K.; Moin, P., Interaction of isotropic turbulence with shock waves: effect of shock strength, J. Fluid Mech., 340, 255 (1997) · Zbl 0899.76194
[28] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16 (1992) · Zbl 0759.65006
[29] LeVecque, R., Numerical Methods for Conservation Laws (1990), Birkhäuser-Verlag: Birkhäuser-Verlag Basel · Zbl 0723.65067
[30] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200 (1994) · Zbl 0811.65076
[31] Mao, D.-K., A treatment of discontinuities in shock-capturing finite difference methods, J. Comput. Phys., 92, 422 (1991) · Zbl 0716.65086
[32] McKenzie, J. F.; Westphal, L. O., Interaction of linear waves with oblique shock waves, Phys. Fluids, 11, 2350 (1968) · Zbl 0172.53203
[33] Pirozzoli, S.; Grasso, F.; D’Andrea, A., Interaction of a shock wave with two counter-rotating vortices: shock dynamics and sound production, Phys. Fluids, 13, 3460 (2001) · Zbl 1184.76423
[34] Poinsot, T. J.; Lele, S. K., Boundary conditions for direct simulations of compressible viscous reacting flows, J. Comput. Phys., 101, 104 (1992) · Zbl 0766.76084
[35] H. S. Ribner, Convection of a Pattern of Vorticity through a Shock Wave; H. S. Ribner, Convection of a Pattern of Vorticity through a Shock Wave
[36] Rogerson, A.; Meiburg, E., A numerical study of the convergence properties of ENO schemes, J. Sci. Comput., 5, 151 (1990) · Zbl 0732.65086
[37] Samtaney, R.; Pullin, D. I., On initial-value and self-similar solutions of the compressible Euler equations, Phys. Fluids, 8, 2650 (1996) · Zbl 1027.76642
[38] Shu, C.-W., Numerical experiments on the accuracy of ENO and modified ENO schemes, J. Sci. Comput., 5, 127 (1990) · Zbl 0732.65085
[39] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics edited by, B. Cockburn, C. Johnson, C.-W. Shu, E. Tadmor, and A. Quarteroni, Springer-Verlag, Berlin, 1998, Vol, 1697, p, 425.; C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics edited by, B. Cockburn, C. Johnson, C.-W. Shu, E. Tadmor, and A. Quarteroni, Springer-Verlag, Berlin, 1998, Vol, 1697, p, 425.
[40] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439 (1988) · Zbl 0653.65072
[41] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes II, J. Comput. Phys., 83, 32 (1989) · Zbl 0674.65061
[42] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107, 262 (1993) · Zbl 0790.76057
[43] Thompson, K. W., Time dependent boundary conditions for hyperbolic systems, J. Comput. Phys., 68, 1 (1987) · Zbl 0619.76089
[44] Tolstykh, A. I.; Lipavskii, M. V., On performance of methods with third- and fifth-order compact upwind differencing, J. Comput. Phys., 140, 205 (1998) · Zbl 0936.76059
[45] Vichnevetsky, R.; Bowles, J. B., Fourier Analysis of Numerical Approximations of Hyperbolic Equations (1982), SIAM: SIAM Philadelphia · Zbl 0495.65041
[46] Z. J. Wang, and, R. F. Chen, Optimized Weighted Essentially Non-Oscillatory Schemes for Computational Aeroacoustics; Z. J. Wang, and, R. F. Chen, Optimized Weighted Essentially Non-Oscillatory Schemes for Computational Aeroacoustics
[47] V. G. Weirs, and, G. V. Candler, Optimization of Weighed ENO Schemes for DNS of Compressible Turbulence; V. G. Weirs, and, G. V. Candler, Optimization of Weighed ENO Schemes for DNS of Compressible Turbulence
[48] Zang, T. A.; Hussaini, M. Y.; Bushnell, D. M., Numerical computations of turbulence amplification in shock-wave interactions, AIAA J., 22, 13 (1984) · Zbl 0534.76062
[49] Zhuang, M.; Cheng, R. F., Optimized upwind dispersion-relation-preserving finite difference schemes for computational aeroacoustics, AIAA J., 36, 2146 (1998)
[50] Yee, H. C.; Sandham, N. D.; Djomehri, M. J., Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys., 150, 199 (1999) · Zbl 0936.76060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.