Lynch, V. E.; Carreras, B. A.; del-Castillo-Negrete, D.; Ferreira-Mejias, K. M.; Hicks, H. R. Numerical methods for the solution of partial differential equations of fractional order. (English) Zbl 1047.76075 J. Comput. Phys. 192, No. 2, 406-421 (2003). Summary: Anomalous diffusion is a possible mechanism underlying plasma transport in magnetically confined plasmas. To model this transport mechanism, fractional order space derivative operators can be used. Here, the numerical properties of partial differential equations of fractional order \(\alpha\), \(1 \leqslant \alpha \leqslant 2\), are studied. Two numerical schemes, an explicit and a semi-implicit one, are used in solving these equations. Two different discretization methods of the fractional derivative operator have also been used. The accuracy and stability of these methods are investigated for several standard types of problems involving partial differential equations of fractional order. Cited in 104 Documents MSC: 76M20 Finite difference methods applied to problems in fluid mechanics 76X05 Ionized gas flow in electromagnetic fields; plasmic flow 65R20 Numerical methods for integral equations Keywords:Fractional derivatives; Partial differential equations; Anomalous diffusion; Plasma transport PDF BibTeX XML Cite \textit{V. E. Lynch} et al., J. Comput. Phys. 192, No. 2, 406--421 (2003; Zbl 1047.76075) Full Text: DOI OpenURL References: [1] Shlesinger, M.F.; Zaslavsky, G.M.; Klafter, J., Nature, 363, 31, (1993) [2] del-Castillo-Negrete, D., Phys. fluids, 10, 576, (1998) [3] Montroll, E.W.; Shlesinger, M.F., (), 1 [4] Carreras, B.A., IEEE trans. plasma sci., 25, 1281, (1997) [5] Carreras, B.A.; Lynch, V.E.; Zaslavsky, G.M., Phys. plasmas, 8, 5096, (2001) [6] B.A. Carreras, V.E. Lynch, L. Garcia, M. Edelman, G.M. Zaslavsky, Chaos 14 (2003), to be published [7] Cardozo, N.J.L., Plasma phys. contr. fusion, 37, 799, (1995) [8] Gentle, K.; Bravenec, R.V.; Cima, G.; Gasquet, H.; Hallock, G.A.; Phillips, P.E.; Ross, D.W.; Rowan, W.L.; Wootton, A.J.; Crowley, T.P.; Heard, J.; Ourona, A.; Schoch, P.M.; Watts, C., Phys. plasmas, 2, 2292, (1995) [9] Samorodnitsky, G.; Taqqu, M.S., Stable non-Gaussian random processes, (1994), Chapman & Hall New York · Zbl 0925.60027 [10] Zaslavsky, G.M., Chaos, 4, 25, (1994) [11] Metzler, R.; Klafter, J., Phys. rep., 339, 1-77, (2000) [12] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York · Zbl 0428.26004 [13] Luise Blank, Nonlinear world, 4, 473-490, (1997) [14] Alberto Carpinteri; Francesco Mainardi, Fractals and fractional calculus in continuum mechanics, (1997), Springer-Verlag New York · Zbl 0917.73004 [15] Kai Diethelm, Elec. trans. numer. anal., 5, 1, (1997) [16] Pozrikidis, C., Numerical computation in science and engineering, (1998), Oxford University Press Oxford · Zbl 0971.65001 [17] del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.E., Phys. rev. lett., 91, 18302, (2003) [18] Murray, J.D., Mathematical biology, (1989), Springer-Verlag New York · Zbl 0682.92001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.