×

On the Krall-type discrete polynomials. (English) Zbl 1051.33006

Let \(\mathbf{u}\) be a quasi-definite linear functional in the vector space \(\mathbb{P}\) of polynomials with complex coefficients. Then there exists a sequence of monic polynomials (\(P_{n})\) with \(\deg P_{n}=n\), such that \(\langle \mathbf{u},\,P_{n}P_{m}\rangle=k_{n}\,\delta_{n,\,m}\), \(k_{n}\neq 0\), \(n,m=0,1,2,\ldots\). Considering perturbations of the functional \(\mathbf{u}\) of the form \[ \tilde{\mathbf{u}}=\mathbf{u}+\sum_{i=1}^{M}A_{i}\,\delta(x-a_{i}), \] where \((A_{i})_{i=1}^{M}\) are nonzero real numbers and \(\delta(x-y)\) is the Dirac linear functional defined by \(\langle \delta(x-y),p(x)\rangle=p(y), \forall p\in \mathbb{P}\), one obtains the so-called Krall-type orthogonal polynomials. In this paper the authors study the case where the functional \(\mathbf{u}\) in (1) is a semiclassical discrete or \(q\)-discrete functional making a special emphasis in the case where \(\mathbf{u}\) is a classical discrete or \(q\)-classical functional. The authors present a unified theory for studying the Krall-type discrete orthogonal polynomials. In particular, the three-term recurrence relation, lowering and raising operators as well as the second order linear difference equation that the sequences of monic orthogonal polynomials satisfy are established. Some relevant examples of \(q\)-Krall polynomials are considered in detail.

MSC:

33C47 Other special orthogonal polynomials and functions
33E30 Other functions coming from differential, difference and integral equations
33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
Full Text: DOI

References:

[1] Álvarez-Nodarse, R., Second order difference equations for certain families of “discrete” polynomials, J. Comput. Appl. Math., 99, 135-156 (1998) · Zbl 0933.42014
[2] Álvarez-Nodarse, R.; Arvesú, J.; Marcellán, F., Modifications of quasi-definite linear functionals via addition of delta and derivatives of delta Dirac functions, Indag. Math. (N.S.) (2004), in press · Zbl 1089.33005
[3] Álvarez-Nodarse, R.; Marcellán, F., Difference equation for modification of Meixner polynomials, J. Math. Anal. Appl., 194, 250-258 (1995) · Zbl 0834.39005
[4] Álvarez-Nodarse, R.; Marcellán, F., The modification of classical Hahn polynomials of a discrete variable, Integral Transform. Spec. Funct., 4, 243-262 (1995) · Zbl 0849.33007
[5] Álvarez-Nodarse, R.; Garcı́a, A. G.; Marcellán, F., On the properties for modification of classical orthogonal polynomials of discrete variables, J. Comput. Appl. Math., 65, 3-18 (1995) · Zbl 0865.42023
[6] Álvarez-Nodarse, R.; Marcellán, F., The limit relations between generalized orthogonal polynomials, Indag. Math. (N.S.), 8, 295-316 (1997) · Zbl 0898.33005
[7] Álvarez-Nodarse, R.; Marcellán, F.; Petronilho, J., WKB approximation and Krall-type orthogonal polynomials, Acta Appl. Math., 54, 27-58 (1998) · Zbl 0913.33002
[8] Álvarez De Morales, M.; Pérez, T.; Piñar, M., Orthogonal polynomials associated with a \(Δ\)-Sobolev inner product, J. Differ. Equations Appl., 8, 125-151 (2002) · Zbl 0997.39007
[9] Area, I.; Godoy, E.; Marcellán, F., Classification of all \(Δ\)-coherent pairs, Integral Transform. Spec. Funct., 9, 1-18 (2000) · Zbl 0972.42017
[10] Area, I.; Godoy, E.; Marcellán, F., \(q\)-coherent pairs and \(q\)-orthogonal polynomials. Orthogonal systems and applications, Appl. Math. Comput., 128, 191-216 (2002) · Zbl 1020.33005
[11] Area, I.; Godoy, E.; Marcellán, F., \(Δ\)-coherent pairs and orthogonal polynomials of a discrete variable, Integral Transform. Spec. Funct., 14, 31-57 (2003) · Zbl 1047.42019
[12] Bavinck, H.; Haeringen, H., Difference equations for generalized Meixner polynomials, J. Math. Anal. Appl., 184, 453-463 (1994) · Zbl 0824.33005
[13] Bavinck, H.; Koekoek, R., On a difference equation for generalizations of Charlier polynomials, J. Approx. Theory, 81, 195-206 (1995) · Zbl 0865.33006
[14] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach: Gordon and Breach New York · Zbl 0389.33008
[15] R. Costas-Santos, On \(q\); R. Costas-Santos, On \(q\)
[16] Everitt, W. N.; Kwon, K. H.; Littlejohn, L. L.; Wellman, R., Orthogonal polynomial solutions of linear ordinary differential equations, J. Comput. Appl. Math., 133, 85-109 (2001) · Zbl 0993.33004
[17] Garcı́a, A. G.; Marcellán, F.; Salto, L., A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math., 57, 147-162 (1995) · Zbl 0853.33009
[18] Gasper, G.; Rahman, M., Encyclopedia of Mathematics and Its Applications, Basic Hypergeometric Series (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0695.33001
[19] Godoy, E.; Marcellán, F.; Salto, L.; Zarzo, A., Perturbations of discrete semiclassical functionals by Dirac masses, Integral Transform. Spec. Funct., 5, 19-46 (1997) · Zbl 0877.33002
[20] Grünbaum, F. A.; Haine, L., Orthogonal polynomials satisfying differential equations: the role of the Darboux transformations, CRM Proc. Lecture Notes, 9, 143-154 (1996) · Zbl 0865.33008
[21] Grünbaum, F. A.; Haine, L., Bispectral Darboux transformation: An extension of the Krall polynomials, Internat. Math. Res. Notices, 8, 359-392 (1997) · Zbl 1125.37321
[22] Grünbaum, F. A.; Haine, L.; Horozov, E., Some functions that generalize the Krall-Laguerre polynomials, J. Comput. Appl. Math., 106, 271-297 (1999) · Zbl 0926.33007
[23] Koekoek, R., A generalization of Moak’s \(q\)-Laguerre polynomials, Canad. J. Math., 42, 280-303 (1990) · Zbl 0705.33010
[24] Koekoek, R., Generalizations of a \(q\)-analogue of Laguerre polynomials, J. Approx. Theory, 69, 55-83 (1992) · Zbl 0763.33003
[25] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\); R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)
[26] Kwon, K. H.; Yoon, G. J.; Littlejohn, L. L., Bochner-Krall orthogonal polynomials, (Dunkl, C.; Ismail, M.; Wong, R., Special Functions (2000), World Scientific: World Scientific Singapore), 181-193 · Zbl 1097.42504
[27] Marcellán, F.; Petronilho, J., Orthogonal polynomials and coherent pairs: the classical case, Indag. Math. (N.S.), 6, 287-307 (1995) · Zbl 0843.42010
[28] J.C. Medem, Polinomios \(q\); J.C. Medem, Polinomios \(q\)
[29] Medem, J. C.; Álvarez-Nodarse, R.; Marcellán, F., On the \(q\)-polynomials: A distributional study, J. Comput. Appl. Math., 135, 197-223 (2001) · Zbl 0991.33007
[30] Meijer, H. G., Determination of all coherent pairs, J. Approx. Theory, 89, 321-343 (1997) · Zbl 0880.42012
[31] L. Salto, Polinomios \(D_w\); L. Salto, Polinomios \(D_w\)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.