×

Tangent cohomology and cup-product for the Kontsevich quantization. (Cohomologie tangente et cup-produit pour la quantification de Kontsevich.) (French) Zbl 1051.53072

This paper gives a detailed proof of the fact that Kontsevich’s formality quasi-isomorphism is compatible with cup-products on tangent cohomology spaces. Let \(M\) be a smooth manifold. The Kontsevich formality theorem states the existence of a quasi-isomorphism \(L\infty\) between the Lie algebra \(g_1\) of polyvector fields on \(M\) and the Lie algebra \(g_2\) of polydifferential operators on \(M\).
In the flat case: \(M=\mathbb R^d\), the quasi-isomorphism between \(g_1\) and \(g_2\), noted \(U\), is such that the derivative of \(U\), at any formal 2-tensor \(h\gamma\), induces an isomorphism of graded commutative algebras from Poisson cohomology space to Hochschild cohomology relative to the deformed multiplication built from \(h\gamma\) via \(U\).
In the present work, the authors clarify the proof of this important result, in a pedagogical and illuminating way, and with all signs and orientations precised.

MSC:

53D55 Deformation quantization, star products

References:

[1] Andler, M.; Dvorsky, A.; Sahi, S., Kontsevich quantization and invariant distributions on Lie groups, Ann. Sci. Ec.Normale Sup. (4), 35, no.3, 371-390 (2002) · Zbl 1009.22020
[2] Arnal, D.; Manchon, D.; Masmoudi, M., Choix des signes pour la formalité de Kontsevich, Pacific J. Math., 203, 23-66 (2002) · Zbl 1055.53066 · doi:10.2140/pjm.2002.203.23
[3] Bayen, F.; Flato, M.; Frønsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization I. Deformations of symplectic structures, Ann. Phys., 111, 61-110 (1978) · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[4] Cattaneo, A.; Felder, G.; Tomassini, L., From local to global deformation quantization of Poisson manifolds (2000) · Zbl 1037.53063
[5] Fulton, W.; MacPherson, R., Compactification of configuration spaces, Ann. Math., 139, 183-225 (1994) · Zbl 0820.14037 · doi:10.2307/2946631
[6] Ginot, G.; Halbout, G., A deformed version of Tamarkin’s formality theorem (2002)
[7] Kontsevich, M., Deformation quantization of Poisson manifolds I (1997)
[8] Mochizuki, T., On the morphism of Duflo-Kirillov type, Journal of Geometry and Physics, 41, 73-113 (2002) · Zbl 1134.53304 · doi:10.1016/S0393-0440(01)00049-3
[9] Tamarkin, D., Another proof of M. Kontsevich Formality theorem for R-n (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.