Guàrdia, Jordi Jacobian nullwerte and algebraic equations. (English) Zbl 1054.14041 J. Algebra 253, No. 1, 112-132 (2002). Summary: We present two applications of Jacobian nullwerte, both related with the resolution of algebraic equations of any degree. We give a very simple expression of the roots of a polynomial of arbitrary degree in terms of derivatives of hyperelliptic theta functions. This expression can be understood as an explicit proof of Torelli’s theorem in the hyperelliptic case. We also give geometrical expressions of the discriminant of a polynomial. Both applications are based on a Jacobian version of Thomae’s formula. Cited in 3 ReviewsCited in 9 Documents MSC: 14H42 Theta functions and curves; Schottky problem 14C34 Torelli problem 14H40 Jacobians, Prym varieties 14H52 Elliptic curves Keywords:hyperelliptic theta functions; discriminant; Thomae’s formula PDF BibTeX XML Cite \textit{J. Guàrdia}, J. Algebra 253, No. 1, 112--132 (2002; Zbl 1054.14041) Full Text: DOI References: [1] Rosenhain, G., Mémoire sur les fonctions de deux variables et à quatre périodes qui sont les inverses des intégrales ultra-elliptiques de la première classe, Mémoires des savants étrangers, XI, 362-468 (1851) [2] Thomae, J., Beitrag zur Bestimmung von \(θ(0,0,…,0)\) durch die Klassenmoduln algebraischer Funktionen, J. Reine Angew. Math., 71, 201-222 (1870) · JFM 02.0244.01 [3] Riemann, B., Gesammelten Mathematische Werke. Nachträge by M. Noether and W. Wirtinger (1902), Teubner: Teubner Leipzig, Dover, New York, 1953 [4] Frobenius, F. G., Über die constanten Factoren der Thetareihen, J. Reine Angew. Math., 98, 241-260 (1885) [5] Mumford, D., Tata Lectures on Theta, I. Tata Lectures on Theta, I, Progr. Math., 28 (1983), Birkhäuser: Birkhäuser Boston [6] Igusa, J. I., On Jacobi’s derivative formula and its generalizations, Amer. J. Math., 102, 2, 409-446 (1980) · Zbl 0433.14033 [7] Igusa, J. I., On the nullwerte of jacobians of odd theta functions, Symp. Math., 24, 83-95 (1979) [9] Takase, K., A generalization of Rosenhain’s normal form for hyperelliptic curves with an application, Proc. Japan Acad. Ser. A Math. Sci., 72, 7, 162-165 (1996) · Zbl 0924.14016 [10] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J., Geometry of Algebraic Curves. Geometry of Algebraic Curves, Grundlehren Math. Wiss., 267 (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0559.14017 [11] Birkenhake, C.; Lange, H., Complex Abelian Varieties. Complex Abelian Varieties, Grundlehren Math. Wiss., 302 (1992), Springer-Verlag: Springer-Verlag New York · Zbl 0779.14012 [12] Mumford, D., Tata Lectures on Theta, II. Tata Lectures on Theta, II, Progr. Math., 43 (1984), Birkhäuser: Birkhäuser Boston · Zbl 0744.14033 [13] Lockhart, P., On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc., 342, 2, 729-752 (1994) · Zbl 0815.11031 [14] Grant, D., A generalization of Jacobi’s derivative formula, J. Reine Angew. Math., 392, 125-136 (1988) · Zbl 0646.14033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.